
Scientific Computing:
Partial Di↵erential Equations

Aleksandar Donev
Courant Institute, NYU

1

donev@courant.nyu.edu

1
Course MATH-GA.2043 or CSCI-GA.2112, Fall 2020

Dec 3rd, 2020

A. Donev (Courant Institute) Lecture XII 12/3/2020 1 / 31

Outline

1 Classification of PDEs

2 Numerical Methods for PDEs

3 Boundary Value Problems

4 Temporal Integration

5 Conclusions

A. Donev (Courant Institute) Lecture XII 12/3/2020 2 / 31

Classification of PDEs

Outline

1 Classification of PDEs

2 Numerical Methods for PDEs

3 Boundary Value Problems

4 Temporal Integration

5 Conclusions

A. Donev (Courant Institute) Lecture XII 12/3/2020 3 / 31

Classification of PDEs

Partial Di↵erential Equations

Partial di↵erential equations (PDEs) are di↵erential equations that
involve more then one independent variables.

PDEs appear prominently in the modeling of physical systems, and
so we will assume the independent variables are time t and spatial
coordinate x in one dimension, or in higher dimensions r, so our
unknown is

u(x , t) or more generally u(r, t)

For time-independent problems, we will focus on one-dimensional
or two-dimensional problems, u(r) ⌘ u(x , y).

Common short-hand notation for derivatives in PDE circles:

@u

@t
= @tu = ut , and

@2
u

@x@y
= @xyu = uxy

The order of the PDE is determined by the highest-order partial
derivative appearing in the PDE.

A. Donev (Courant Institute) Lecture XII 12/3/2020 4 / 31

Classification of PDEs

First Order Linear PDEs

The simplest first-order linear PDE is the advection equation

ut = �cux ,

where c is a constant speed of propagation.

If the domain of x-dependence is the whole real line, one needs an
initial condition at time t0 = 0,

u(0, x) = u0(x) for x 2 R.

The solution of the equation can be constructed analytically for any
initial condition:

u(x , t) = u0(x � ct),

which means at time t the solution is the same as at time t0 but
shifted by a distance c(t � t0).

If c > 0 information propagates upward, and if c < 0 information
propagates downward.

A. Donev (Courant Institute) Lecture XII 12/3/2020 5 / 31

Classification of PDEs

Advection Equation

Now consider the case when the domain of the PDE is a finite
interval, 0 x 1, with initial condition

u(0, x) = u0(x) for 0 x 1.

If c > 0, then at a later time t the solution would shift upward and
we would not know what it is for x < ct.

To specify the problem we thus also need boundary conditions, if
c > 0 then

u(0, t) = uL(t), where uL(t = 0) = u0(x = 0),

or if c < 0 then

u(1, t) = uR(t), where uR(t = 0) = u0(x = 1).

A. Donev (Courant Institute) Lecture XII 12/3/2020 6 / 31

Classification of PDEs

Second-Order PDEs

Consider a second-order linear equation with constant coe�cients:

auxx + buxy + cuyy + dux + euy + fu + g = 0.

Depending on the values of the coe�cients, this equation is classified
as:

b
2 > 4ac : hyperbolic

b
2 = 4ac : parabolic

b
2 < 4ac : elliptic

The type of the equation makes a profound e↵ect on how it is
solved numerically.

In real life, the coe�cients depend on time or the spatial position
instead of being constants, and one usually considers systems of
SPDEs which may be of mixed type.

A. Donev (Courant Institute) Lecture XII 12/3/2020 7 / 31

Classification of PDEs

PDE Classification

However, based on the most prominent character in the PDE, one still uses
the classification loosely:

Hyperbolic problems are time-dependent problems where there is
no steady-state and no dissipation (di↵usion), such as the advection
equation or the wave equation:

utt = uxx .

Parabolic problems are time-dependent problems evolving toward a
steady-state because of dissipation (di↵usion), such as the heat
equation:

ut = µuxx , where µ > 0 is heat conductivity.

Elliptic problems are time-independent problems that describe the
steady-state reached by parabolic PDEs, such as the Laplace
equation:

ut = uxx + uyy = 0.

A. Donev (Courant Institute) Lecture XII 12/3/2020 8 / 31

Classification of PDEs

Heat Equation

In one spatial dimension,

ut = µuxx , for 0 x 1,

with initial conditions

u(0, x) = f (x) for 0 x 1

We also need one boundary condition for each of the end-points of
the interval (in higher dimensions for each point along the boundary),
e.g., Dirichlet boundary conditions

u(t, 0) = uL(t), and u(t, 1) = uR(t)

or Neumann boundary conditions

@u

@x
(t, 0) = 0, and

@u

@x
(t, 1) = 0.

The heat equation describes, for example, the temperature along the
length of a rod where the ends are being held at specified
temperatures (Dirichlet) or are insulated (Neumann).

A. Donev (Courant Institute) Lecture XII 12/3/2020 9 / 31

Numerical Methods for PDEs

Outline

1 Classification of PDEs

2 Numerical Methods for PDEs

3 Boundary Value Problems

4 Temporal Integration

5 Conclusions

A. Donev (Courant Institute) Lecture XII 12/3/2020 10 / 31

Numerical Methods for PDEs

Spatio-Temporal Discretization

The first step in solving a PDE is spatio-temporal discretization of
the solution, that is, representing the infinite-dimensional object
u(x , t) as a discrete collection U of values (a vector, matrix, or array)
representing the solution over the spatial domain over some period of
time 0 t T .

From the discrete solution U, one should be able to obtain an
approximation of u(x , t) at any desired point in space and time inside
the proper domain, for example, using interpolation.

As a simple example, one could represent the solution on a discrete
spatio-temporal grid,

U
(k)
i ⇡ u(i�x , k�t), for i = 0, 1, . . . ,N, and k = 0, 1, . . .

The same concepts of and relations between consistency, stability
and convergence as for ODEs apply for (linear) PDEs.

A. Donev (Courant Institute) Lecture XII 12/3/2020 11 / 31

Numerical Methods for PDEs

Spatial Discretization

ut = f (u, ux , uxx)

Often, we construct the spatial discretization separately from the
temporal one.
This semidiscrete method converts a PDE into system of N ODEs

@tU(t) = F [U (t) , t] ,

where U(t) 2 RN is a discrete approximation to u(x , t).

F [U (t) , t] is a consistent discretization of f (u, ux , uxx), with error
O(h2) = O(N�2) measured in an appropriate norm, where the grid
spacing h = �x is a measure of the granularity of the spatial
discretization.

Then time is discretized, as for ODEs, with either a fixed or a variable
time step �t.

A. Donev (Courant Institute) Lecture XII 12/3/2020 12 / 31

Numerical Methods for PDEs

Finite-Something Method

Depending on how space is discretized, we distinguish the following
classes of methods:

Finite-di↵erence methods, where the solution is represented
pointwise on a discrete set of nodes, e.g., a regular grid:

Ui (t) ⇡ u(i�x , t), for i = 0, 1, . . . ,N

Finite-element methods, where the solution is directly represented
through the interpolant, that is, U(t) actually stores the coe�cients of
the interpolating function ũ(x ; t), or more specifically, the coe�cients
of a discrete set of N basis functions. Equations for the coe�cients
are obtained by integration of the PDE over the domain (weak
formulation).
Finite-volume methods, where the solution is represented by the
average values over a set of cells (integral over the cell).

If the solution is time-independent (steady-state, ut = 0), then the
problem simply becomes that of solving the system of N equations,

F (U) = 0.

A. Donev (Courant Institute) Lecture XII 12/3/2020 13 / 31

Numerical Methods for PDEs

Finite-Di↵erence Method

The idea behind finite-di↵erence methods is simple: Use
finite-di↵erence formulas to approximate derivatives. For example,
one can use the second-order centered di↵erence (see Lectures 2
and 3 and Homework 1):

ux(i�x) ⇡ Ui+1 � Ui�1

2�x

uxx(i�x) ⇡ Ui+1 � 2Ui + Ui�1

�x2
.

For example, for the heat equation ut = µuxx we get the system of
ODEs:

@tUi (t) = Fi (U) = µ
Ui+1(t)� 2Ui (t) + Ui�1(t)

�x2
,

where at the boundary points we use the boundary conditions, for
example, for Dirichlet BCs we fix

U0(t) = uL(t), UN+1(t) = uR(t).
A. Donev (Courant Institute) Lecture XII 12/3/2020 14 / 31

Boundary Value Problems

Outline

1 Classification of PDEs

2 Numerical Methods for PDEs

3 Boundary Value Problems

4 Temporal Integration

5 Conclusions

A. Donev (Courant Institute) Lecture XII 12/3/2020 15 / 31

Boundary Value Problems

Poisson Equation

Finding the steady-state or equilibrium state of a system (the same as
the limit t ! 1 of the heat equation) is often modeled using the
Poisson equation

uxx + uyy = 0 in a bounded domain ⌦ ⇢ R2

To complete this equation we need boundary conditions but no
initial conditions. A typical example is the Dirichlet BC

u (@⌦) = 0,

where @⌦ is the boundary of the domain ⌦. This is a model elliptic
PDE.
To illustrate things, let us consider a one-dimensional domain,
⌦ ⌘ [a, b], and solve the boundary-value problem

uxx = 0 for a < x < b

with the boundary condition

u(a) = 0, and u(b) = 1
A. Donev (Courant Institute) Lecture XII 12/3/2020 16 / 31

Boundary Value Problems

Boundary Value Problems

uxx = 0 for a < x < b

Observe that this is just a second-order ODE, and we have one
initial condition u(a) = 0.

What we are missing however is an initial condition for ux(a).

One approach is to use a shooting method, which makes a guess for
ux(a), then solves the ODE from x = a to x = b, and sees if we get
the correct value u(b) = 1.

Denote with ub(z) the value u(b) obtained by solving the ODE
starting with initial guess ux(a) = z .

The shooting method basically requires solving the nonlinear
equation for z

ub(z) = 1,

which is not that easy.

A. Donev (Courant Institute) Lecture XII 12/3/2020 17 / 31

Boundary Value Problems

Finite-Di↵erence BVP

Instead, we can just use a finite-di↵erence expression for the
derivative to set

uxx(i�x) ⇡ Ui+1 � 2Ui + Ui�1

�x2
= 0 for i = 1, . . . ,N � 1

which together with U0 = u(a) = 0 and UN = u(b) = 1 gives us a
linear system for Ui with N � 1 equations and N � 1 unknowns.

So we have converted the BVP into solving a linear system of
equations, which we know how to solve.

The same works for the Poisson equation in two dimensions as wells,
but we need to spend more time thinking about how to discretize the
Laplacian operator

r2
u = uxx + uyy

on our domain of interest (finite di↵erences for regular grids, finite
elements for irregular grids).

A. Donev (Courant Institute) Lecture XII 12/3/2020 18 / 31

Boundary Value Problems

Finite-Element BVP

To discretize an elliptic linear/nonlinear PDE we first have to choose
the following (all studied in this course!):

A grid and a way to represent the function on the grid (related to
interpolation, e.g. piecewise polynomial interpolant).

A way to convert the PDE into a linear/nonlinear system of equations
(strong or weak form),

�r2
u = f on ⌦, u (@⌦) = 0)

�
Z

⌦

v
�
r2

u
�
dx =

Z

⌦

fv dx = �
Z

⌦

rv ·ru dx 8v

For weak (integral) form, a way to compute integrals (say Gauss
quadrature)

An e�cient solver for the system of equations (sparse iterative
linear solvers).

A. Donev (Courant Institute) Lecture XII 12/3/2020 19 / 31

Boundary Value Problems

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.

A. Donev (Courant Institute) Lecture XII 12/3/2020 20 / 31

Boundary Value Problems

Basis functions on triangles

For irregular grids the x and y directions are no longer separable.

But the idea of using basis functions �i ,j , a reference triangle, and
piecewise polynomial interpolants still applies.

For a piecewise constant function we need one coe�cient per triangle,
for a linear function we need 3 coe�cients (x , y , const), for quadratic
6 (x , y , x2, y2, xy , const), so we choose the reference nodes:

A. Donev (Courant Institute) Lecture XII 12/3/2020 21 / 31

Boundary Value Problems

Adaptive Meshes: Quadtrees and Block-Structured

A. Donev (Courant Institute) Lecture XII 12/3/2020 22 / 31

Boundary Value Problems

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.

A. Donev (Courant Institute) Lecture XII 12/3/2020 23 / 31

Temporal Integration

Outline

1 Classification of PDEs

2 Numerical Methods for PDEs

3 Boundary Value Problems

4 Temporal Integration

5 Conclusions

A. Donev (Courant Institute) Lecture XII 12/3/2020 24 / 31

Temporal Integration

Temporal Integrators

@tUi (t) = µ
Ui+1(t)� 2Ui (t) + Ui�1(t)

�x2
) @tU =

µ

�x2
AU

Recall that the sti↵ness of this system of ODEs is measured by the
eigenvalues of µA/�x

2.
Here A is a tri-diagonal matrix with �2 on the diagonal, and 1 on the
o↵-diagonal.

In one spatial dimension, the non-zero eigenvalues are in the interval

�i 2 [� 4µ

�x2
,� ⇡2µ

(N�x)2
],

which means that the ratio of the largest to the smallest eigenvalue
(in magnitude) is r ⇠ N

2.

The system of ODEs becomes very sti↵ as the spatial discretization
is refined (not good!).

A. Donev (Courant Institute) Lecture XII 12/3/2020 25 / 31

Temporal Integration

Explicit Scheme

Consider using forward Euler method with a fixed time step �t, and

denote U
(k)
i ⇡ Ui (k�t):

Ui (t +�t) = U
(k+1)

i = U
(k)
i +

µ�t

�x2

⇣
U

(k)
i+1

� 2U(k)
i + U

(k)
i�1

⌘
.

Euler’s method will be stable if

�t <
2

maxi |Re(�i)|
=

�x
2

2µ
,

which is a manifestation of the so-called Courant-Friedrichs-Lewy
(CFL) stability condition

µ�t

�x2
<

1

2
.

A. Donev (Courant Institute) Lecture XII 12/3/2020 26 / 31

Temporal Integration

Implicit Schemes

@tU =
µ

�x2
AU

If one uses an implicit method such as Crank-Nicolson the time step
can be increased, but a linear system must be solved at each time
step:

U(k+1) �U(k)

�t
=

µ

�x2
A

"
U(k+1) +U(k)

2

#
.

For time-independent problems, e.g., elliptic PDEs, one may need to
solve a non-linear system of equations but Newton’s method will
ultimately require solving a similar linear system!

The linear systems that appear when solving PDEs have large but
sparse and structured matrices. Often preconditioned iterative
methods are used.

A. Donev (Courant Institute) Lecture XII 12/3/2020 27 / 31

Temporal Integration

Advection Equation

ut = �cux

Consider first a finite-di↵erence explicit method that uses a centered
di↵erence approximation to ux :

U
(k+1)

i � U
(k)
i

�t
= �c

U
(k)
i+1

� U
(k)
i�1

2�x

While this seems reasonable, this scheme is unconditionally
unstable for any time step �t.

If one uses at least a third-order Runge-Kutta scheme one can get a
conditionally stable scheme.

A. Donev (Courant Institute) Lecture XII 12/3/2020 28 / 31

Temporal Integration

Upwinding

Instead, we need to use the physics of the equation (direction of
information propagation), to come up with a upwind discretization
that uses one-sided derivatives:

U
(k+1)

i � U
(k)
i

�t
=

8
<

:
�c

U(k)
i �U(k)

i�1

�x if c > 0

�c
U(k)
i+1

�U(k)
i

�x if c 0

The upwind method is stable if the CFL stability condition is
satisfied:

�t <
�x

|c|
Constructing schemes that are stable and have good order of accuracy
and are also e�cient is often an art form and relies heavily on past
experience and lessons learned over the years. There is little
systematic guidance...

A. Donev (Courant Institute) Lecture XII 12/3/2020 29 / 31

Conclusions

Outline

1 Classification of PDEs

2 Numerical Methods for PDEs

3 Boundary Value Problems

4 Temporal Integration

5 Conclusions

A. Donev (Courant Institute) Lecture XII 12/3/2020 30 / 31

Conclusions

Conclusions/Summary

The appropriate numerical method for solving a PDE depends heavily
on its type: hyperbolic (advection, wave), parabolic (heat) or
elliptic (Poisson or Laplace), or mixed, e.g.,
advection/convection-di↵usion equation.

The first step in solving a PDE is the construction of a spatial
discretization of the solution: finite-di↵erence, finite-element or
finite-volume.

This leads to a large system of ODEs that can in principle be solved
with any of the methods we already discussed.

Using an explicit method leads to a severe CFL time-step
restriction due to increasing sti↵ness as the discretization is refined.

One can use implicit methods but this requires solving a large
sparse linear system at every time step.

A. Donev (Courant Institute) Lecture XII 12/3/2020 31 / 31

