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Mathematical Background

Formulation

Optimization problems are among the most important in engineering
and finance, e.g., minimizing production cost, maximizing profits,
etc.

min
x2Rn

f (x)

where x are some variable parameters and f : Rn ! R is a scalar
objective function.
Observe that one only need to consider minimization as

max
x2Rn

f (x) = � min
x2Rn

[�f (x)]

A local minimum x
? is optimal in some neighborhood,

f (x?)  f (x) 8x s.t. kx� x
?k  R > 0.

(think of finding the bottom of a valley)
Finding the global minimum is generally not possible for arbitrary
functions (think of finding Mt. Everest without a satelite).
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Mathematical Background

Connection to nonlinear systems

Assume that the objective function is di↵erentiable (i.e., first-order
Taylor series converges or gradient exists).

Then a necessary condition for a local minimizer is that x? be a
critical point

g (x?) = rxf (x
?) =

⇢
@f

@xi
(x?)

�

i

= 0

which is a system of non-linear equations!

In fact similar methods, such as Newton or quasi-Newton, apply to
both problems.

Vice versa, observe that solving f (x) = 0 is equivalent to an
optimization problem

min
x

h
f (x)T f (x)

i

although this is only recommended under special circumstances.
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Mathematical Background

Su�cient Conditions

Assume now that the objective function is twice-di↵erentiable (i.e.,
Hessian exists).

A critical point x?is a local minimum if the Hessian is positive

definite

H (x?) = r2
xf (x

?) � 0

which means that the minimum really looks like a valley or a convex

bowl.

At any local minimum the Hessian is positive semi-definite,
r2

xf (x
?) ⌫ 0.

Methods that require Hessian information converge fast but are
expensive.
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Mathematical Background

Mathematical Programming

The general term used is mathematical programming.
Simplest case is unconstrained optimization

min
x2Rn

f (x)

where x are some variable parameters and f : Rn ! R is a scalar
objective function.

Find a local minimum x
?:

f (x?)  f (x) 8x s.t. kx� x
?k  R > 0.

(think of finding the bottom of a valley).
Find the best local minimum, i.e., the global minimumx

?: This is
virtually impossible in general and there are many specialized
techniques such as genetic programming, simmulated annealing,
branch-and-bound (e.g., using interval arithmetic), etc.

Special case: A strictly convex objective function has a unique
local minimum which is thus also the global minimum.
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Mathematical Background

Constrained Programming

The most general form of constrained optimization

min
x2X

f (x)

where X ⇢ Rn is a set of feasible solutions.

The feasible set is usually expressed in terms of equality and

inequality constraints:

h(x) = 0

g(x)  0

The only generally solvable case: convex programming

Minimizing a convex function f (x) over a convex set X : every local
minimum is global.
If f (x) is strictly convex then there is a unique local and global

minimum.
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Mathematical Background

Special Cases

Special case of convex programming is linear programming:

minx2Rn

�
c
T
x
 

s.t. Ax  b .

The feasible set here is a convex polytope (polygon, polyhedron) in
Rn, consider for now the case when it is bounded, meaning there are
at least n + 1 constraints.

The optimal point is a vertex of the polyhedron, meaning a point
where (generically) n constraints are active,

Aactx
? = bact .

Solving the problem therefore means finding the subset of active
constraints:
Combinatorial search problem, solved using the simplex algorithm

(search along the edges of the polytope).
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Smooth Unconstrained Optimization

Necessary and Su�cient Conditions

A necessary condition for a local minimizer:
The optimum x

? must be a critical point (maximum, minimum or

saddle point):

g (x?) = rxf (x
?) =

⇢
@f

@xi
(x?)

�

i

= 0,

and an additional su�cient condition for a critical point x? to be a
local minimum:
The Hessian at the optimal point must be positive definite,

H (x?) = r2
xf (x

?) =

⇢
@2f

@xi@xj
(x?)

�

ij

� 0.

which means that the minimum really looks like a valley or a convex

bowl.
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Smooth Unconstrained Optimization

Direct-Search Methods

A direct search method only requires f (x) to be continuous but
not necessarily di↵erentiable, and requires only function evaluations.

Methods that do a search similar to that in bisection can be devised
in higher dimensions also, but they may fail to converge and are
usually slow.

The MATLAB function fminsearch uses the Nelder-Mead or
simplex-search method, which can be thought of as rolling a simplex
downhill to find the bottom of a valley. But there are many others
and this is an active research area.

Curse of dimensionality: As the number of variables
(dimensionality) n becomes larger, direct search becomes hopeless
since the number of samples needed grows as 2n!
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Smooth Unconstrained Optimization

Minimum of 100(x2 � x21 )
2
+ (a � x1)2 in MATLAB

% Rosenbrock or ’ banana ’ f u n c t i o n :
a = 1 ;
banana = @( x ) 100⇤( x (2)�x (1)ˆ2)ˆ2+(a�x ( 1 ) ) ˆ 2 ;

% This f u n c t i o n must accep t a r r a y arguments !
banana xy = @( x1 , x2 ) 100⇤( x2�x1 .ˆ2 ) . ˆ2+( a�x1 ) . ˆ 2 ;

[ x , y ] = meshgr id ( l i n s p a c e ( 0 , 2 , 1 0 0 ) ) ;
f i g u r e ( 1 ) ; e z s u r f ( banana xy , [ 0 , 2 , 0 , 2 ] )
f i g u r e ( 2 ) ; c o n t o u r f ( x , y , banana xy ( x , y ) , 100 )

% Co r r e c t answer s a r e x =[1 ,1 ] and f ( x)=0
[ x , f v a l ] = fm in s e a r ch ( banana , [�1.2 , 1 ] , . . .

op t imse t ( ’ TolX ’ , 1 e�8))
x = 0.999999999187814 0.999999998441919
f v a l = 1.099088951919573 e�18
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Smooth Unconstrained Optimization

Figure of Rosenbrock f (x)
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Smooth Unconstrained Optimization

Descent Methods

Finding a local minimum is generally easier than the general problem
of solving the non-linear equations

g (x?) = rxf (x
?) = 0

We can evaluate f in addition to rxf .
The Hessian is positive-(semi)definite near the solution (enabling

simpler linear algebra such as Cholesky).

If we have a current guess for the solution x
k , and a descent

direction (i.e., downhill direction) dk :

f
�
x
k + ↵dk

�
< f

�
x
k
�
for all 0 < ↵  ↵max ,

then we can move downhill and get closer to the minimum (valley):

x
k+1 = x

k + ↵kd
k ,

where ↵k > 0 is a step length.
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Smooth Unconstrained Optimization

Gradient Descent Methods

For a di↵erentiable function we can use Taylor’s series:

f
�
x
k + ↵dk

�
⇡ f

�
x
k
�
+ ↵k

h
(rf )T d

k
i

This means that fastest local decrease in the objective is achieved
when we move opposite of the gradient: steepest or gradient

descent:
d
k = �rf

�
x
k
�
= �gk .

One option is to choose the step length using a line search

one-dimensional minimization:

↵k = argmin
↵

f
�
x
k + ↵dk

�
,

which needs to be solved only approximately, see Wolfe conditions

on inexact line search in Wikipedia for details.
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Smooth Unconstrained Optimization

Steepest Descent

Assume an exact line search was used, i.e., ↵k = argmin↵ �(↵) where

�(↵) = f
�
x
k + ↵dk

�
.

�0(↵) = 0 =
⇥
rf

�
x
k + ↵dk

�⇤T
d
k .

This means that steepest descent takes a zig-zag path down to the
minimum.

Second-order analysis shows that steepest descent has linear
convergence with convergence coe�cient

C ⇠ 1� r

1 + r
, where r =

�min (H)

�max (H)
=

1

2(H)
,

inversely proportional to the condition number of the Hessian.

Steepest descent can be very slow for ill-conditioned Hessians: One
improvement is to use conjugate-gradient method instead.
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Smooth Unconstrained Optimization

Newton’s Method

Making a second-order or quadratic model of the function:

f (xk +�x) = f (xk) +
⇥
g
�
x
k
�⇤T

(�x) +
1

2
(�x)T

⇥
H
�
x
k
�⇤

(�x)

we obtain Newton’s method:

g(x+�x) = rf (x+�x) = 0 = g +H (�x) )

�x = �H
�1

g ) x
k+1 = x

k �
⇥
H
�
x
k
�⇤�1 ⇥

g
�
x
k
�⇤

.

Note that this is identical to using the Newton-Raphson method for
solving the nonlinear system rxf (x?) = 0.

At the minimum H (x?) � 0 so one can use Cholesky factorization

to compute
⇥
H
�
x
k
�⇤�1 ⇥

g
�
x
k
�⇤

su�ciently close to the minimum.
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Smooth Unconstrained Optimization

Problems with Newton’s Method

Newton’s method is exact for a quadratic function (this is another
way to define order of convergence!) and converges in one step when
H ⌘ H

�
x
k
�
= const.

For non-linear objective functions, however, Newton’s method requires
solving a linear system every step: expensive.

It may not converge at all if the initial guess is not very good, or may
converge to a saddle-point or maximum: unreliable.

All of these are addressed by using variants of quasi-Newton and
trust-region methods:

x
k+1 = x

k +�x
k = x

k � ↵k
�
B

k
��1

g
�
x
k
�
,

where the step length 0 < ↵k < 1 and B
k is an approximation to

the true Hessian.
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Smooth Unconstrained Optimization

Quasi-Newton Methods

The approximation of the Hessian in quasi-Newton methods is built
using low-rank updates (recall Woodbury formula from Homework
2) to estimate the Hessian using finite di↵erences with a small cost
per step.
The Hessian estimate satisfies the secant condition

g
�
x
k+1

�
� g

�
x
k
�
= y

k = B
k+1�x

k .

A popular rank-2 update of the Hessian is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm:

B
k+1 = B

k +
y
k
�
y
k
�T

(yk)T �xk
�

z
k
�
z
k
�T

(zk)T �xk
,

where z
k = B

k�x
k .

This update is symmetric and with careful line search it ensures that

the Hessian estimate remains symmetric positive semi-definite

so Cholesky factorization (or conjugate gradient) can be used.
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Equality Constrained Optimization

Penalty Approach

The idea is the convert the constrained optimization problem:

minx2Rn f (x)

s.t. h(x) = 0 .

into an unconstrained optimization problem.

Consider minimizing the penalized function

L↵(x) = f (x) + ↵ kh(x)k22 = f (x) + ↵ [h(x)]T [h(x)] ,

where ↵ > 0 is a penalty parameter.

Note that one can use penalty functions other than sum of squares.

If the constraint is exactly satisfied, then L↵(x) = f (x).
As ↵ ! 1 violations of the constraint are penalized more and more,
so that the equality will be satisfied with higher accuracy.
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Equality Constrained Optimization

Penalty Method

The above suggest the penalty method (see homework):
For a monotonically diverging sequence ↵1 < ↵2 < · · · , solve a
sequence of unconstrained problems

x
k = x (↵k) = argmin

x

n
Lk(x) = f (x) + ↵k [h(x)]

T [h(x)]
o

and the solution should converge to the optimum x
?,

x
k ! x

? = x (↵k ! 1) .

Note that one can use x
k�1 as an initial guess for, for example,

Newton’s method.

Also note that the problem becomes more and more ill-conditioned

as ↵ grows.
A better approach uses Lagrange multipliers in addition to penalty
(augmented Lagrangian).
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Conclusions
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Conclusions

Conclusions/Summary

Optimization, or mathematical programming, is one of the most
important numerical problems in practice.

Optimization problems can be constrained or unconstrained, and
the nature (linear, convex, quadratic, algebraic, etc.) of the functions
involved matters.

Finding a global minimum of a general function is virtually
impossible in high dimensions, but very important in practice.

An unconstrained local minimum can be found using direct search,
gradient descent, or Newton-like methods.

Equality-constrained optimization is tractable, but the best method
depends on the specifics.

Constrained optimization is tractable for the convex case, otherwise
often hard, and even NP-complete for integer programming.
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