Scientific Computing:
Numerical Integration

Aleksandar Donev
Courant Institute, NYU

donev@courant.nyu.edu

Course MATH-GA.2043 or CSCI-GA.2112, Fall 2020

Nov 5th, 2020
Outline

1. Numerical Integration in 1D
2. Adaptive / Refinement Methods
3. Higher Dimensions
4. Conclusions
Outline

1. Numerical Integration in 1D
2. Adaptive / Refinement Methods
3. Higher Dimensions
4. Conclusions
Numerical Quadrature

- We want to numerically approximate a definite integral
 \[J = \int_a^b f(x) \, dx. \]

- The function \(f(x) \) may not have a closed-form integral, or it may itself not be in closed form.

- Recall that the integral gives the area under the curve \(f(x) \), and also the Riemann sum:
 \[\lim_{n \to \infty} \sum_{i=0}^{n} f(t_i)(x_{i+1} - x_i) = J, \text{ where } x_i \leq t_i \leq x_{i+1} \]

- A quadrature formula approximates the Riemann integral as a discrete sum over a set of \(n \) nodes:
 \[J \approx J_n = \sum_{i=1}^{n} \alpha_i f(x_i) \]
Midpoint Quadrature

Split the interval into \(n \) intervals of width \(h = (b - a)/n \) (stepsize), and then take as the nodes the midpoint of each interval:

\[
x_k = a + (2k - 1)h/2, \quad k = 1, \ldots, n
\]

\[
J_n = h \sum_{k=1}^{n} f(x_k), \quad \text{and clearly} \quad \lim_{n \to \infty} J_n = J
\]
Focus on one of the sub intervals, and estimate the quadrature error using the midpoint rule assuming \(f(x) \in C^2 \):

\[
\varepsilon^{(i)} = \left[\int_{x_i-h/2}^{x_i+h/2} f(x) \, dx \right] - hf(x_i)
\]

Expanding \(f(x) \) into a Taylor series around \(x_i \) to first order,

\[
f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{1}{2} f''(\eta(x))(x - x_i)^2,
\]

The linear term integrates to zero, so we get

\[
\int_{x_i-h/2}^{x_i+h/2} f'(x_i)(x - x_i) = 0 \quad \Rightarrow
\]

\[
\varepsilon^{(i)} = \frac{1}{2} \int_{x_i-h/2}^{x_i+h/2} f''(\eta(x))(x - x_i)^2 \, dx
\]
Using a generalized mean value theorem we can show

$$\varepsilon^{(i)} = f''[\xi] \frac{1}{2} \int_h (x - x_i)^2 \, dx = \frac{h^3}{24} f''[\xi]$$

for some $a < \xi < b$.

Now, combining the errors from all of the intervals together gives the global error

$$\varepsilon = \int_a^b f(x) \, dx - h \sum_{k=1}^n f(x_k) = J - J_n = \frac{h^3}{24} \sum_{k=1}^n f''[\xi_k]$$

Use a discrete generalization of the mean value theorem to prove second-order accuracy

$$\varepsilon = \frac{h^3}{24} n \left(f''[\xi] \right) = \frac{b - a}{24} \cdot h^2 \cdot f''[\xi]$$

for some $a < \xi < b$.
Interpolatory Quadrature

Instead of integrating $f(x)$, integrate a polynomial interpolant $\phi(x) \approx f(x)$:

![Diagram of quadrature rules](image)

Figure 6.2. Four quadrature rules.
Consider integrating an **interpolating function** $\phi(x)$ which passes through $n + 1$ **nodes** x_i:

$$
\phi(x_i) = y_i = f(x_i) \quad \text{for } i = 0, 2, \ldots, m.
$$

First take the **piecewise linear interpolant** and integrate it over the sub-interval $l_i = [x_{i-1}, x_i]$:

$$
\phi_i^{(1)}(x) = y_{i-1} + \frac{y_i - y_{i-1}}{x_i - x_{i-1}}(x - x_i)
$$

to get the **trapezoidal formula** (the area of a trapezoid):

$$
\int_{x \in l_i} \phi_i^{(1)}(x) \, dx = h \frac{f(x_{i-1}) + f(x_i)}{2}
$$
Now add the integrals over all of the sub-intervals we get the composite trapezoidal quadrature rule:

\[\int_{a}^{b} f(x) \, dx \approx \frac{h}{2} \sum_{i=1}^{n} [f(x_{i-1}) + f(x_i)] \]

\[= \frac{h}{2} [f(x_0) + 2f(x_1) + \cdots + 2f(x_{n-1}) + f(x_n)] \]

with similar error to the midpoint rule.
Simpson’s Quadrature Formula

- As for the midpoint rule, split the interval into n intervals of width $h = (b - a)/n$, and then take as the nodes the endpoints and midpoint of each interval:

 $$x_k = a + kh, \quad k = 0, \ldots, n$$
 $$\bar{x}_k = a + (2k - 1)h/2, \quad k = 1, \ldots, n$$

- Then, take the **piecewise quadratic interpolant** $\phi_i(x)$ in the sub-interval $I_i = [x_{i-1}, x_i]$ to be the parabola passing through the nodes $(x_{i-1}, y_{i-1}), (x_i, y_i)$, and (\bar{x}_i, \bar{y}_i).

- Integrating this interpolant in each interval and summing gives the **Simpson quadrature rule**:

 $$J_S = \frac{h}{6} \left[f(x_0) + 4f(\bar{x}_1) + 2f(x_1) + \cdots + 2f(x_{n-1}) + 4f(\bar{x}_n) + f(x_n) \right]$$

 $$= \frac{h}{12} = 4/6 = 2/3 h$$

 $$\varepsilon = J - J_S = -\frac{(b - a)}{2880} \cdot h^4 \cdot f^{(4)}(\xi).$$
To reach **spectral accuracy** for **smooth functions**, instead of using higher-degree polynomial interpolants (recall Runge’s phenomenon), let’s try using **n non-equispaced nodes**:

$$J \approx J_n = \sum_{i=0}^{n} w_i f(x_i)$$

It can be shown that there is a special set of **$n + 1$ nodes and weights**, so that the quadrature formula is exact for polynomials of degree up to $m = 2n - 1$,

$$\int_{a}^{b} p_m(x) dx = \sum_{i=0}^{n} w_i p_m(x_i).$$

This gives the **Gauss quadrature** based on the **Gauss nodes and weights**, usually pre-tabulated for the standard interval $[-1, 1]$:

$$\int_{a}^{b} f(x) dx \approx \frac{b - a}{2} \sum_{i=0}^{n} w_i f(x_i).$$
Gauss Weights and Nodes

- The low-order Gauss formulas are:
 \[n = 1 : \int_{-1}^{1} f(x) \, dx \approx f \left(-\frac{1}{\sqrt{3}} \right) + f \left(\frac{1}{\sqrt{3}} \right) \]
 \[n = 2 : \int_{-1}^{1} f(x) \, dx \approx \frac{5}{9} f \left(-\frac{\sqrt{15}}{5} \right) + \frac{8}{9} f(0) + \frac{5}{9} f \left(\frac{\sqrt{15}}{5} \right) \]

- The weights and nodes are either tabulated or calculated to numerical precision on the fly, for example, using eigenvalue methods.

- Gauss quadrature is very accurate for smooth functions even with few nodes.

- The MATLAB function \texttt{quadl}(f, a, b) uses (adaptive) Gauss-Lobatto quadrature.

- An alternative is to use Chebyshev nodes and weights, called Clenshaw-Curtis quadrature (exact for polynomials of degree \(n \)).
Outline

1. Numerical Integration in 1D

2. Adaptive / Refinement Methods

3. Higher Dimensions

4. Conclusions
Asymptotic Error Expansions

- The idea in **Richardson extrapolation** is to use an error estimate formula to **extrapolate a more accurate answer** from less-accurate answers.

- Assume that we have a quadrature formula for which we have a theoretical error estimate:

 \[
 J_h = \sum_{i=1}^{n} \alpha_i f(x_i) = J + \alpha h^p + O(h^{p+1})
 \]

 - Recall the **big O notation**: \(g(x) = O(h^p) \) if:

 \[\exists (h_0, C) > 0 \text{ s.t. } |g(x)| < C |h|^p \text{ whenever } |h| < h_0 \]

- For trapezoidal formula

 \[\varepsilon = \frac{b - a}{24} \cdot h^2 \cdot f''(\xi) = O(h^2).\]
Richardson Extrapolation

- Now repeat the calculation but with step size $2h$ (for equi-spaced nodes just skip the odd nodes):

\[
\tilde{J}(h) = J + \alpha h^p + O(h^{p+1})
\]
\[
\tilde{J}(2h) = J + \alpha 2^p h^p + O(h^{p+1})
\]

- Solve for α and obtain

\[
J = \frac{2^p \tilde{J}(h) - \tilde{J}(2h)}{2^p - 1} + O(h^{p+1})
\]

which now has order of accuracy $p + 1$ instead of p.

- The composite trapezoidal quadrature gives $\tilde{J}(h)$ with order of accuracy $p = 2$, $\tilde{J}(h) = J + O(h^2)$.
Romberg Quadrature

- Assume that we have evaluated $f(x)$ at $n = 2^m + 1$ equi-spaced nodes, $h = 2^{-m}(b - a)$, giving approximation $\tilde{J}(h)$.
- We can also easily compute $\tilde{J}(2h)$ by simply skipping the odd nodes. And also $\tilde{J}(4h)$, and in general, $\tilde{J}(2^q h)$, $q = 0, \ldots, m$.
- We can keep applying Richardson extrapolation recursively to get Romberg’s quadrature:
 Combine $\tilde{J}(2^q h)$ and $\tilde{J}(2^{q-1} h)$ to get a better estimate. Then combine the estimates to get an even better estimates, etc.

\[
J_{r,0} = \tilde{J} \left(\frac{b - a}{2^r} \right), \quad r = 0, \ldots, m
\]

\[
J_{r,q+1} = \frac{4^{q+1} J_{r,q} - J_{r-1,q}}{4^{q+1} - 1}, \quad q = 0, \ldots, m - 1, \quad r = q + 1, \ldots, m
\]

- The final answer, $J_{m,m} = J + O \left(h^{2(m+1)} \right)$ is much more accurate than the starting $J_{m,0} = J + O \left(h^2 \right)$, for smooth functions.
Adaptive (Automatic) Integration

- We would like a way to control the error of the integration, that is, specify a **target error** ε_{max} and let the algorithm figure out the correct step size h to satisfy

 \[|\varepsilon| \lesssim \varepsilon_{\text{max}}, \]

 where ε is an **error estimate**.

- Importantly, h may vary **adaptively** in different parts of the integration interval:

 Smaller step size when the function has larger derivatives.

- The crucial step is obtaining an error estimate: Use the same idea as in Richardson extrapolation.
Error Estimate for Simpson’s Quadrature

- Assume we are using Simpson’s quadrature and compute the integral $J(h)$ with step size h.

- Then also compute integrals for the left half and for the right half with step size $h/2$, $J(h/2) = J_L(h/2) + J_R(h/2)$.

$$J = J(h) - \frac{1}{2880} \cdot h^5 \cdot f^{(4)}(\xi) + O(h^6)$$

$$J = J(h/2) - \frac{1}{2880} \cdot \frac{1}{32} \cdot h^5 \cdot [f^{(4)}(\xi_L) + f^{(4)}(\xi_R)]$$

- Now assume that the fourth derivative varies little over the interval, $f^{(4)}(\xi_L) \approx f^{(4)}(\xi_L) \approx f^{(4)}(\xi)$, to estimate:

$$\frac{1}{2880} \cdot h^5 \cdot f^{(4)}(\xi) \approx \frac{16}{15} [J(h) - J(h/2)]$$

$$J(h/2) - J \approx \varepsilon = \frac{1}{16} [J(h) - J(h/2)].$$
Adaptive Integration

Now assume that we have split the integration interval \([a, b]\) into sub-intervals, and we are considering computing the integral over the sub-interval \([\alpha, \beta]\), with stepsize

\[h = \beta - \alpha. \]

We need to compute this sub-integral with accuracy

\[|\varepsilon(\alpha, \beta)| = \frac{1}{16} |[J(h) - J(h/2)]| \leq \varepsilon \frac{h}{b - a}. \]

An adaptive integration algorithm is \(J \approx J(a, b, \varepsilon) \) where the recursive function is:

\[
J(\alpha, \beta, \varepsilon) = \begin{cases}
J(h/2) & \text{if } |J(h) - J(h/2)| \leq 16\varepsilon \\
J(\alpha, \frac{\alpha + \beta}{2}, \varepsilon) + J(\frac{\alpha + \beta}{2}, \beta, \varepsilon) & \text{otherwise}
\end{cases}
\]

In practice one also stops the refinement if \(h < h_{\text{min}} \) and is more conservative e.g., use 10 instead of 16.
Fig. 9.4. Distribution of quadrature nodes \((\text{left})\); density of the integration stepsize in the approximation of the integral of Example 9.9 \((\text{right})\).
Outline

1. Numerical Integration in 1D
2. Adaptive / Refinement Methods
3. Higher Dimensions
4. Conclusions
A **separable integral** can be done by doing integration along one axes first, then another:

\[
J = \int_{x=0}^{1} \int_{y=0}^{1} f(x, y) \, dx \, dy = \int_{x=0}^{1} dx \left[\int_{y=0}^{1} f(x, y) \, dy \right]
\]

Consider evaluating the function at nodes on a **regular grid**

\[
x_{i,j} = \{x_i, y_j\}, \quad f_{i,j} = f(x_{i,j}).
\]

We can use **separable basis** functions:

\[
\phi_{i,j}(x) = \phi_i(x) \phi_j(y).
\]
Bilinear basis functions

Bilinear basis function $\phi_{3,3}$ on a 5x5 grid
Use a different interpolation function $\phi_{i,j} : \Omega_{i,j} \to \mathbb{R}$ in each rectangle of the grid

$$\Omega_{i,j} = [x_i, x_{i+1}] \times [y_j, y_{j+1}],$$

and it is sufficient to look at a unit reference rectangle $\hat{\Omega} = [0, 1] \times [0, 1]$.

Recall: The equivalent of piecewise linear interpolation in 1D is the piecewise bilinear interpolation

$$\phi_{i,j}(x, y) = \phi^{(x)}_{(i)}(x) \cdot \phi^{(y)}_{(j)}(y),$$

where $\phi^{(x)}_{(i)}$ and $\phi^{(y)}_{(j)}$ are linear functions.

The global interpolant can be written in the tent-function basis

$$\phi(x, y) = \sum_{i,j} f_{i,j} \phi_{i,j}(x, y).$$
Bilinear Integration

- The composite **two-dimensional trapezoidal quadrature** is then:

\[
J \approx \int_{x=0}^{1} \int_{y=0}^{1} \phi(x, y) \, dx \, dy = \sum_{i,j} f_{i,j} \int \int \phi_{i,j}(x, y) \, dx \, dy = \sum_{i,j} w_{i,j} f_{i,j}
\]

- Consider one of the corners \((0, 0)\) of the reference rectangle and the corresponding basis \(\hat{\phi}_{0,0}\) restricted to \(\hat{\Omega}\):

\[
\hat{\phi}_{0,0}(\hat{x}, \hat{y}) = (1 - \hat{x})(1 - \hat{y})
\]

- Now integrate \(\hat{\phi}_{0,0}\) over \(\hat{\Omega}\):

\[
\int_{\hat{\Omega}} \hat{\phi}_{0,0}(\hat{x}, \hat{y}) \, d\hat{x} \, d\hat{y} = \frac{1}{4}.
\]

- Since each **interior node** contributes to 4 rectangles, its weight is 1. **Edge nodes** contribute to 2 rectangles, so their weight is 1/2. **Corners** contribute to only one rectangle, so their weight is 1/4.
Adaptive Mesh Refinement

Quadtree

Block-structured refinement
Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many **disjoint triangles**. Similarly **tetrahedral meshes** in 3D.
Outline

1. Numerical Integration in 1D
2. Adaptive / Refinement Methods
3. Higher Dimensions
4. Conclusions
The MATLAB function \(\text{quad}(f, a, b, \varepsilon) \) uses adaptive Simpson quadrature to compute the integral.

The MATLAB function \(\text{quadl}(f, a, b, \varepsilon) \) uses adaptive Gauss-Lobatto quadrature.

MATLAB says: “The function \(\text{quad} \) may be more efficient with low accuracies or nonsmooth integrands.”

In two dimensions, for separable integrals over rectangles, use

\[
J = \text{dblquad}(f, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, \varepsilon)
\]

There is also \(\text{triplequad} \).
Conclusions

Conclusions/Summary

- Numerical integration or quadrature approximates an integral via a discrete **weighted sum** of function values over a set of **nodes**.
- Integration is based on interpolation: Integrate the interpolant to get a good approximation.
- Piecewise polynomial interpolation over **equi-spaced nodes** gives the **trapezoidal and Simpson quadratures** for lower order, and higher order are generally not recommended.
- In higher dimensions we split the domain into **rectangles for regular grids** (separable integration), or **triangles/tetrahedra** for simplicial meshes.
- Integration in high dimensions d becomes harder and harder because the number of nodes grows as N^d: **Curse of dimensionality**. Monte Carlo is one possible cure...