Scientific Computing: The Fast Fourier Transform

Aleksandar Donev *Courant Institute, NYU*¹ *donev@courant.nyu.edu*

¹Course MATH-GA.2043 or CSCI-GA.2112, Fall 2020

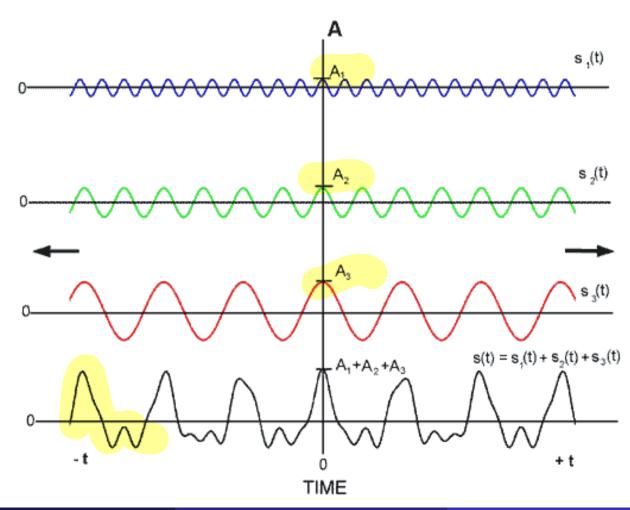
October 29, 2020

Outline

1 Fourier Series

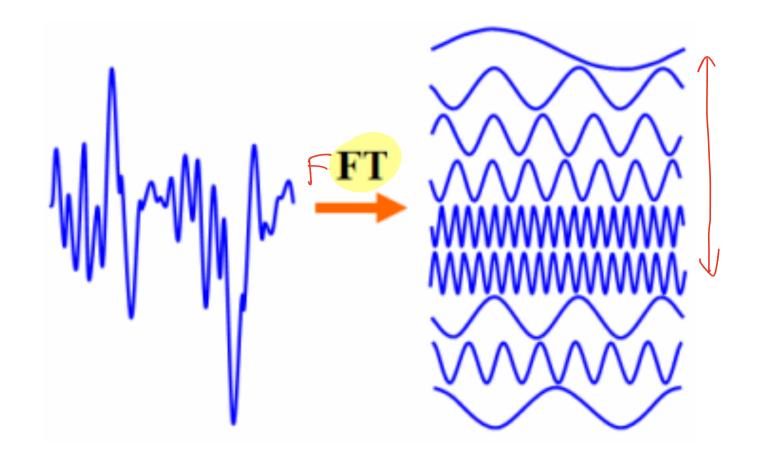
- 2 Discrete Fourier Transform
- 3 Fast Fourier Transform
- Applications of FFT
- 5 Wavelets

Fourier Composition



A. Donev (Courant Institute)

Fourier Decomposition



Periodic Functions

• Consider now interpolating / approximating **periodic functions** defined on the interval $I = [0, 2\pi]$:

$$\forall x \quad f(x+2\pi)=f(x),$$

as appear in practice when analyzing signals (e.g., sound/image processing).

• Also consider only the space of complex-valued square-integrable functions $L^2_{2\pi}$,

$$\forall f \in L^2_w : (f, f) = ||f||^2 = \int_0^{2\pi} |f(x)|^2 dx < \infty.$$

- Polynomial functions are not periodic and thus basis sets based on orthogonal polynomials are not appropriate.
- Instead, consider sines and cosines as a basis function, combined together into complex exponential functions

$$\phi_k(x) = e^{ikx} = \cos(kx) + i\sin(kx), \quad k = 0, \pm 1, \pm 2, \dots$$

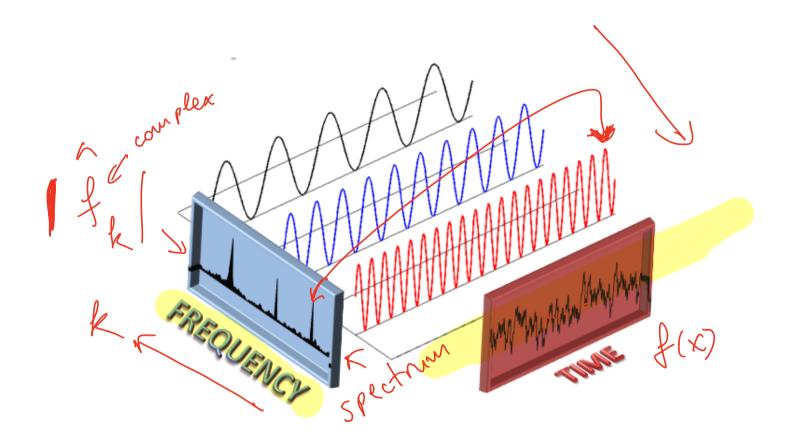
Fourier Basis Functions

$$\phi_k(x) = e^{ikx}, \quad (k = 0, \pm 1, \pm 2, \ldots)$$

- It is easy to see that these are **orhogonal** with respect to the continuous dot product $(\phi_j, \phi_k) = \int_{x=0}^{2\pi} \phi_j(x) \phi_k^*(x) dx = \int_0^{2\pi} \exp\left[i(j-k)x\right] dx = 2\pi \delta_{\text{min}} k$
- The complex exponentials can be shown to form a complete trigonometric polynomial basis for the space $L_{2\pi}^2$, i.e., $\forall f \in L_{2\pi}^2$: $f(x) = \sum_{k=-\infty}^{\infty} (\hat{f}_k) e^{ikx}$, $\Rightarrow ||f - \hat{f}_k e^{ikx}||_2^2$

$$\hat{f}_k = \frac{(f,\phi_k)}{2\pi} = \boxed{\frac{1}{2\pi} \cdot \int_0^{2\pi} f(x) e^{-ikx} dx}.$$

Fourier Decomposition



Truncated Fourier Basis

- For a general interval [0, X] the **discrete frequencies** are wave frequency $k = \frac{2\pi}{X}\kappa^{L}\kappa = 0, \pm 1, \pm 2, ...$
- For non-periodic functions one can take the limit $X \to \infty$ in which case we get **continuous frequencies**.
- Now consider a **discrete Fourier basis** that only includes the first *N* basis functions, i.e.,

$$\begin{cases} k = -(N-1)/2, \dots, 0, \dots, (N-1)/2 & \text{if } N \text{ is odd} \\ k = -N/2, \dots, 0, \dots, N/2 - 1 & \text{if } N \text{ is even}, \end{cases}$$

and for simplicity we focus on N odd.

• The least-squares **spectral approximation** for this basis is:

$$f(x) \approx \phi(x) = \sum_{k=-(N-1)/2}^{(N-1)/2} \hat{f}_k e^{ikx}.$$

Discrete Fourier Basis

• Let us discretize a given function on a set of *N* equi-spaced nodes as a vector

$$\mathbf{f}_j = f(x_j)$$
 where $x_j = jh$ and $h = \frac{2}{f}$

Observe that j = N is the same node as j = 0 due to periodicity so we only consider N instead of N + 1 nodes.

 Now consider a discrete Fourier basis that only includes the first N basis functions, i.e.,

$$\begin{cases} k = -(N-1)/2, \dots, 0, \dots, (N-1)/2 & \text{if } N \text{ is odd} \\ k = -N/2, \dots, 0, \dots, N/2 - 1 & \text{if } N \text{ is even.} \end{cases}$$

- Focus on N odd and denote K = (N 1)/2.
- Discrete dot product between discretized "functions":

$$f \cdot \mathbf{g} = h \sum_{j=0}^{N-1} f_j g_j^* f_$$

Discrete Fourier Transform

Fourier Interpolant

$$orall f \in L^2_{2\pi}$$
: $f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}$

• We will try to approximate periodic functions with a truncated Fourier series:

$$f(x) \approx \phi(x) = \sum_{k=-K}^{K} \phi_k(x) = \sum_{k=-K}^{K} \hat{f}_k e^{ikx}.$$

. .

• The discrete Fourier basis is $\{\phi_{-K}, \dots, \phi_{K}\},\$

$$(\phi_k)_j = \exp\left(ikx_j\right),$$

and it is a **discretely orthonormal basis** in which we can represent periodic functions,

$$\phi_k \cdot \phi_{k'} = 2\pi \delta_{k,k'}$$

$$e e e$$

$$10/29/2020 10$$

10/29/2020

Proof of Discrete Orthogonality

Fourier Matrix

Let us collect the discrete Fourier basis functions as columns in a unitary N × N matrix (fft(eye(N)) in MATLAB)

$$\boldsymbol{\Phi}_{N} = \begin{bmatrix} \boldsymbol{\phi}_{-K} \\ \dots \\ \boldsymbol{\phi}_{0} \dots \\ \boldsymbol{\phi}_{K} \end{bmatrix} \quad \Rightarrow \quad \Phi_{jk}^{(N)} = \frac{1}{\sqrt{N}} \exp\left(2\pi i j k / N\right)$$

• The truncated Fourier series is

$$\mathbf{f} = \mathbf{\Phi}_N \hat{\mathbf{f}}. \qquad \neq \qquad =$$

Λ

• Since the matrix Φ_N is unitary, we know that $\Phi_N^{-1} = \Phi_N^{\star}$ and therefore

 $\widehat{\mathbf{f}} = \mathbf{\Phi}_N^* \mathbf{f}, \qquad \widehat{\mathbf{f}} = \mathbf{\Phi}_N^* \mathbf{f},$

which is nothing more than a change of basis!

Discrete Fourier Transform

• The Fourier interpolating polynomial is thus easy to construct

where the discrete Fourier coefficients are given by

$$\hat{f}_{k}^{(N)} = \frac{\mathbf{f} \cdot \phi_{k}}{2\pi} = \frac{1}{N} \sum_{j=0}^{N-1} f(x_{j}) \exp(-ikx_{j}) \approx \hat{f}_{k}$$

• We can make the expressions more symmetric if we shift the frequencies to k = 0, ..., N but one should still think of half of the frequencies as "negative" and half as "positive" the frequencies as "negative" and "negative" and

Discrete Fourier Transform

 The Discrete Fourier Transform (DFT) is a change of basis taking us from real/time to Fourier/frequency domain:

Forward
$$\mathbf{f} \to \hat{\mathbf{f}}$$
: $\hat{f}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} f_j \exp\left(-\frac{2\pi i j k}{N}\right), \quad k = 0, \dots, N-1$
Inverse $\hat{\mathbf{f}} \to \mathbf{f}$: $f_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{f}_k \exp\left(\frac{2\pi i j k}{N}\right), \quad j = 0, \dots, N-1$

 There is different conventions for the DFT depending on the interval on which the function is defined and placement of factors of N and 2π.

Read the documentation to be consistent!

• A direct matrix-vector multiplication algorithm therefore takes $O(N^2)$ multiplications and additions. Can we do it faster?

Discrete spectrum

The set of discrete Fourier coefficients f̂ is called the discrete spectrum, and in particular,

$$S_k = \left| \hat{f}_k \right|^2 = \hat{f}_k \hat{f}_k^\star,$$

is the **power spectrum** which measures the frequency content of a signal.

• If f is real, then \hat{f} satisfies the **conjugacy property**

$$\hat{f}_{-k} = \hat{f}_k^\star,$$

so that half of the spectrum is redundant and \hat{f}_0 is real.

• For an even number of points N the largest frequency k = -N/2 does not have a conjugate partner.

Approximation error: Analytic

• The Fourier interpolating trigonometric polynomial is spectrally accurate and a really great approximation for (very) smooth functions.

Discrete Fourier Transform

Spectral Accuracy (or not)

The Fourier interpolating polynomial φ(x) has spectral accuracy,
 i.e., exponential in the number of nodes N

$$\|f(x)-\phi(x)\|\sim e^{-N}$$

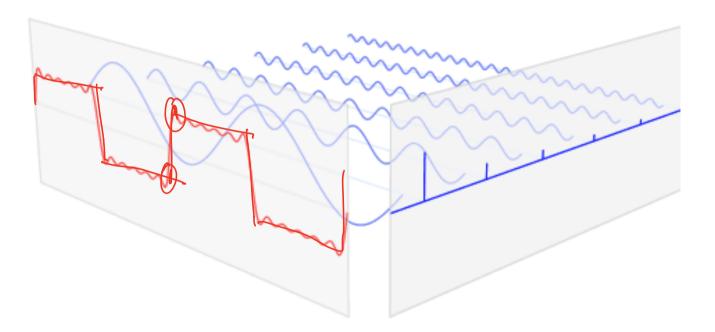
for sufficiently smooth functions.

- Specifically, what is needed is sufficiently rapid decay of the Fourier coefficients with k, e.g., exponential decay $\left| \hat{f}_k \right| \sim e^{-|k|}$.
- Discontinuities cause slowly-decaying Fourier coefficients, e.g., power law decay $|\hat{f}_k| \sim k^{-1}$ for **jump discontinuities**.
- Jump discontinuities lead to slow convergence of the Fourier series for non-singular points (and no convergence at all near the singularity), so-called **Gibbs phenomenon** (ringing):

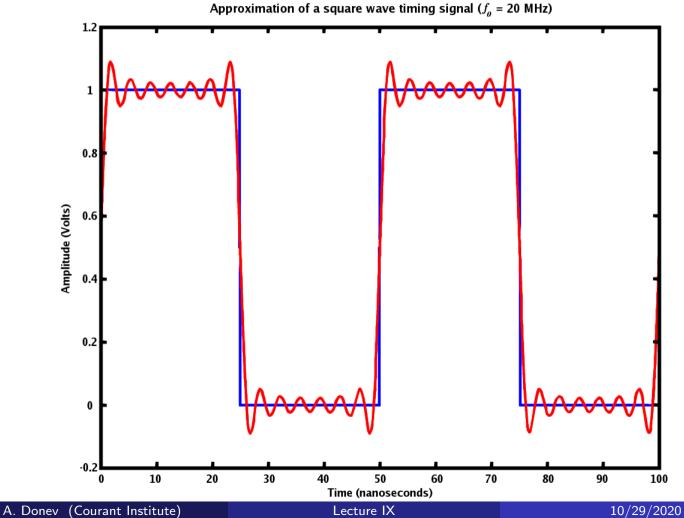
$$\|f(x) - \phi(x)\| \sim \begin{cases} N^{-1} & \text{at points away from jumps} \\ \text{const.} & \text{at the jumps themselves} \end{cases}$$

Discrete Fourier Transform

Gibbs Phenomenon



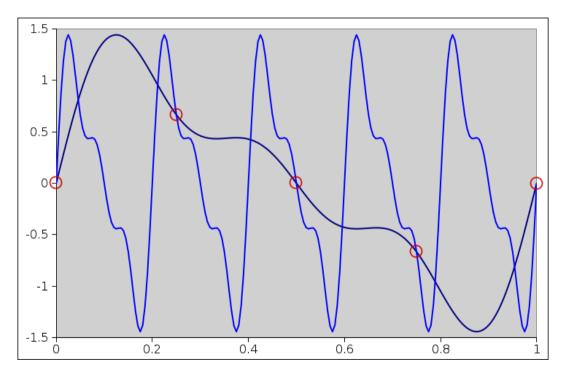
Gibbs Phenomenon



20 19 / 44

Aliasing

If we sample a signal at too few points the Fourier interpolant may be wildly wrong: **aliasing** of frequencies k and 2k, 3k, ...



Standard anti-aliasing rule is the **Nyquist–Shannon** criterion (theorem): Need **at least 2 samples per period**.

A. Donev (Courant Institute)

Fast Fourier Transform

DFT

 Recall the transformation from real space to frequency space and back:

$$\mathbf{f} \to \hat{\mathbf{f}}: \quad \hat{f}_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j \exp\left(-\frac{2\pi i j k}{N}\right), \quad k = -\frac{(N-1)}{2}, \dots, \frac{(N-1)}{2}$$

$$\hat{\mathbf{f}} \rightarrow \mathbf{f}$$
: $f_j = \sum_{k=-(N-1)/2}^{(N-1)/2} \hat{f}_k \exp\left(\frac{2\pi i j k}{N}\right), \quad j = 0, \dots, N-1$

 We can make the forward-reverse Discrete Fourier Transform (DFT) more symmetric if we shift the frequencies to k = 0,..., N:

Forward
$$\mathbf{f} \to \hat{\mathbf{f}}$$
: $\hat{f}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} f_j \exp\left(-\frac{2\pi i j k}{N}\right), \quad k = 0, \dots, N-1$

Inverse
$$\hat{\mathbf{f}} \to \mathbf{f}$$
: $f_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{f}_k \exp\left(\frac{2\pi i j k}{N}\right), \quad j = 0, \dots, N-1$

FFT

• We can write the transforms in matrix notation:

$$\hat{\mathbf{f}} = rac{1}{\sqrt{N}} \mathbf{U}_N \mathbf{f}$$
 $\mathbf{f} = rac{1}{\sqrt{N}} \mathbf{U}_N^{\star} \hat{\mathbf{f}},$

where the **unitary Fourier matrix** is an $N \times N$ matrix with entries $e^{2\pi i j k/N} = u_{jk}^{(N)} = \omega_N^{jk}, \quad \omega_N = e^{-2\pi i/N}.$

- A direct matrix-vector multiplication algorithm therefore takes O(N²) multiplications and additions.
- Is there a faster way to compute the **non-normalized**

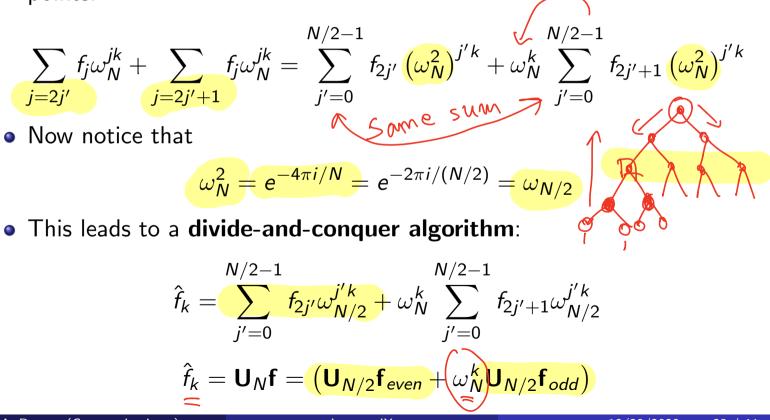
$$(\alpha \kappa \psi^{k} \phi^{k}) \hat{f}_{k} = \sum_{j=0}^{N-1} f_{j} \omega_{N}^{jk} ? \qquad k=0, \dots, N^{-1}$$

うし

Fast Fourier Transform

FFT

- For now assume that N is even and in fact a power of two, $N = 2^n$.
- The idea is to split the transform into two pieces, even and odd points:



FFT Complexity

• The Fast Fourier Transform algorithm is recursive:

$$FFT_{N}(\mathbf{f}) = FFT_{\frac{N}{2}}(\mathbf{f}_{even}) + \mathbf{w} \boxdot FFT_{\frac{N}{2}}(\mathbf{f}_{odd}),$$

where $w_k = \omega_N^k$ and \Box denotes element-wise product. When N = 1 the FFT is trivial (identity).

- To compute the whole transform we need log₂(N) steps, and at each step we only need N multiplications and N/2 additions at each step.
- The total **cost of FFT** is thus much better than the direct method's $O(N^2)$: Log-linear $O(N \log N)$.

• Note that there are different **normalization conventions** used in different software.

In MATLAB

- The forward transform is performed by the function $\hat{f} = fft(f)$ and the inverse by $f = fft(\hat{f})$. Note that ifft(fft(f)) = f and f and \hat{f} may be complex.
- In MATLAB, and other software, the frequencies are not ordered in the "normal" way -(N-1)/2 to +(N-1)/2, but rather, the nonnegative frequencies come first, then the positive ones, so the "funny" ordering is

$$(0,1,\ldots,(N-1)/2), -\frac{N-1}{2}, -\frac{N-1}{2}+1,\ldots,-1.$$

This is because such ordering (shift) makes the forward and inverse transforms symmetric.

• The function *fftshift* can be used to order the frequencies in the "normal" way, and *ifftshift* does the reverse:

 $\hat{f} = fftshift(fft(f))$ (normal ordering).

Multidimensional FFT

• DFTs and FFTs generalize straightforwardly to higher dimensions due to separability: **Transform each dimension independently**

$$\hat{f} = \frac{1}{N_x N_y} \sum_{j_y=0}^{N_y-1} \sum_{j_x=0}^{N_x-1} f_{j_x,j_y} \exp\left[-\frac{2\pi i \left(j_x k_x + j_y k_y\right)}{N}\right]$$
$$\hat{f}_{k_x,k_y} = \frac{1}{N_x} \sum_{j_y=0}^{N_y-1} \exp\left(-\frac{2\pi i j_y k_x}{N}\right) \left[\frac{1}{N_y} \sum_{j_y=0}^{N_y-1} f_{j_x,j_y} \exp\left(-\frac{2\pi i j_y k_y}{N}\right)\right]$$

 For example, in two dimensions, do FFTs of each column, then FFTs of each row of the result:

$$\hat{\mathbf{f}} = \boldsymbol{\mathcal{F}}_{\textit{row}}\left(\boldsymbol{\mathcal{F}}_{\textit{col}}\left(\mathbf{f}
ight)
ight)$$

• The cost is N_y one-dimensional FFTs of length N_x and then N_x one-dimensional FFTs of length N_y :

$$N_x N_y \log N_x + N_x N_y \log N_y = N_x N_y \log (N_x N_y) = N \log N$$

Applications of FFTs

- Because FFT is a very fast, almost linear algorithm, it is used often to accomplish things that are not seemingly related to function approximation.
- Denote the Discrete Fourier transform, computed using FFTs in practice, with

$$\hat{\mathbf{f}}=\mathcal{F}\left(\mathbf{f}
ight)$$
 and $\mathbf{f}=\mathcal{F}^{-1}\left(\hat{\mathbf{f}}
ight)$.

• Plain FFT is used in signal processing for **digital filtering**: Multiply the spectrum by a filter $\hat{S}(k)$ discretized as $\hat{\mathbf{s}} = \left\{ \hat{S}(k) \right\}_{k}$:

$$\mathbf{f}_{\textit{filt}} = \mathcal{F}^{-1}\left(\hat{\mathbf{s}} \boxdot \hat{\mathbf{f}}
ight).$$

• Examples include **low-pass**, **high-pass**, or **band-pass filters**. Note that **aliasing** can be a problem for digital filters.

Applications of FFT

FFT-based noise filtering (1)

Fs = 1000; dt = 1/Fs; L = 1000; t = (0:L-1)*dt;T=L*dt;

- % Sampling frequency
- % Sampling interval
- % Length of signal
- % Time vector
- % Total time interval

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid x = 0.7 * sin(2*pi*50*t) + sin(2*pi*120*t);y = x + 2*randn(size(t)); % Sinusoids plus noise

```
figure(1); clf;
plot(t(1:100),y(1:100),'b--'); hold on
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time')
```

FFT-based noise filtering (2)

if (0)

$$N=(L/2)*2;$$
 % Even N
 $y_{hat} = fft(y(1:N));$
% Frequencies ordered in a funny way:
 $f_{funny} = 2*pi/T* [0:N/2-1, -N/2:-1];$
% Normal ordering:
 $f_{normal} = 2*pi/T* [-N/2 : N/2-1];$
else
 $N=(L/2)*2-1;$ % Odd N
 $y_{hat} = fft(y(1:N));$ % $fftshift(fft(y(L,M)));$
% Frequencies ordered in a funny way:
 $f_{funny} = 2*pi/T* [0:(N-1)/2, -(N-1)/2:-1];$
% Normal ordering:
 $f_{normal} = 2*pi/T* [-(N-1)/2 : (N-1)/2];$
end

FFT-based noise filtering (3)

figure(2); clf; plot(f_funny, abs(y_hat), 'ro'); hold

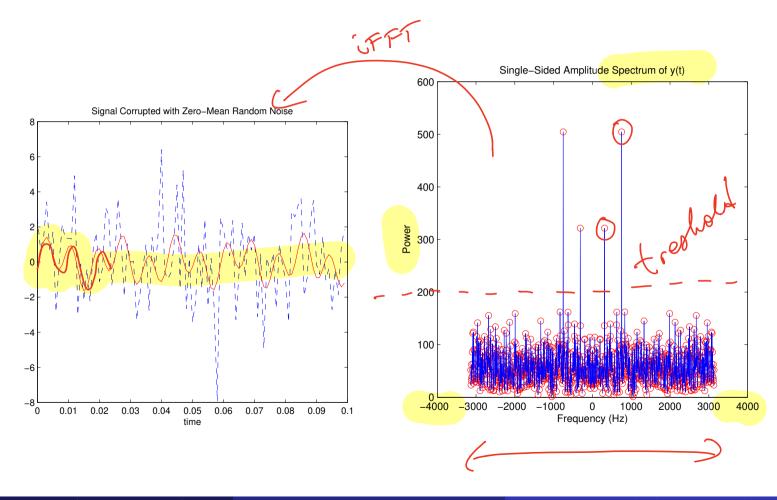
y_hat=<mark>fftshift(</mark>y_hat); figure(2); plot<mark>(f_normal</mark>, <mark>abs(y_hat)</mark>, 'b-');

title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('Power')

y_hat(abs(y_hat)<250)=0; % Filter out noise
y_filtered = ifft(ifftshift(y_hat));
figure(1); plot(t(1:100),y_filtered(1:100),'r-')</pre>

Applications of FFT

FFT results



Spectral Derivative

- Consider approximating the derivative of a periodic function f(x), computed at a set of N equally-spaced nodes, f.
- One way to do it is to use the **finite difference approximations**:

$$f'(x_j) \approx rac{f(x_j+h) - f(x_j-h)}{2h} = rac{f_{j+1} - f_{j-1}}{2h}$$

 In order to achieve spectral accuracy of the derivative, we can differentiate the spectral approximation:

Spectrally-accurate finite-difference derivative

$$f'(x) \approx \phi'(x) = \frac{d}{dx}\phi(x) = \frac{d}{dx}\left(\sum_{k=0}^{N-1}\hat{f}_k e^{ikx}\right) = \sum_{k=0}^{N-1}\hat{f}_k \frac{d}{dx}e^{ikx}$$

$$\boldsymbol{\phi}' = \sum_{k=0}^{N-1} \left(ik \, \hat{f}_k \right) e^{ikx} = \boldsymbol{\mathcal{F}}^{-1} \left(i \hat{\mathbf{f}} \boxdot \mathbf{k} \right)$$

• Differentiation becomes multiplication in Fourier space.

Unmatched mode

- Recall that for even N there is one unmatched mode, the one with the highest frequency and amplitude $\hat{f}_{N/2}$.
- We need to choose what we want to do with that mode; see notes by S. G. Johnson (MIT) linked on webpage for details:

$$\phi(x) = \hat{f}_0 + \sum_{0 < k < N/2} \left(\hat{f}_k e^{ikx} + \hat{f}_{N-k} e^{-ikx} \right) + \hat{f}_{N/2} \cos\left(\frac{Nx}{2}\right).$$

This is the unique "minimal oscillation" trigonometric interpolant.Differentiating this we get

$$\widehat{(\phi')}_k = \widehat{f}_k \begin{cases} 0 & \text{if } k = N/2 \\ ik & \text{if } k < N/2 \\ i(k-N) & \text{if } k > N/2 \end{cases}$$

• Real valued interpolation samples result in **real-valued** $\phi(x)$ for all x.

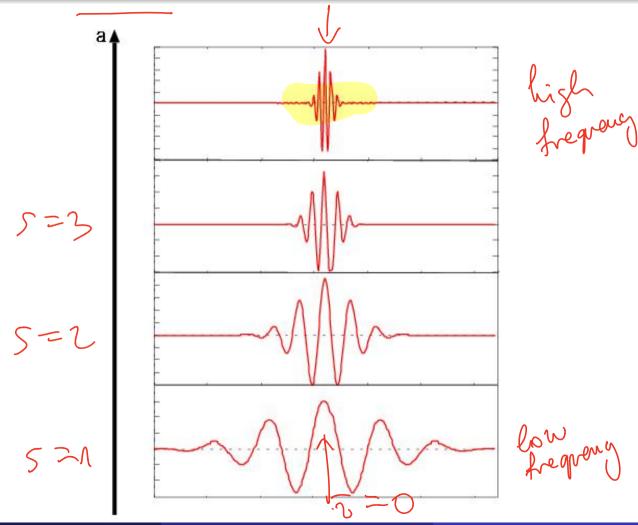
FFT-based differentiation

% From Nick Trefethen's Spectral Methods book
% Differentiation of
$$exp(sin(x))$$
 on $(0,2*pi]$:
N = 8; % Even number!
h = $2*pi/N$; x = $h*(1:N)$ ';
v = $exp(sin(x))$; vprime = $cos(x).*v$;
v_hat = $fft(v)$; ($n \circ dffshift$)
ik = $1i*[0:N/2-1 \circ N/2+1:-1]$ '; % Zero special mode
w_hat = ik .* v_hat;
w = real(ifft(w_hat));
error = norm(w-vprime, inf)
integral = $ifft(v)$; $ifft(v)$, i

The need for wavelets

- Fourier basis is great for analyzing periodic signals, but is not good for functions that are **localized in space**, e.g., brief bursts of speach.
- Fourier transforms are not good with handling **discontinuities** in functions because of the Gibbs phenomenon.
- Fourier polynomails **assume periodicity** and are not as useful for non-periodic functions.
- Because Fourier basis is not localized, the highest frequency present in the signal must be used everywhere: One cannot use **different resolutions in different regions of space**.

An example wavelet

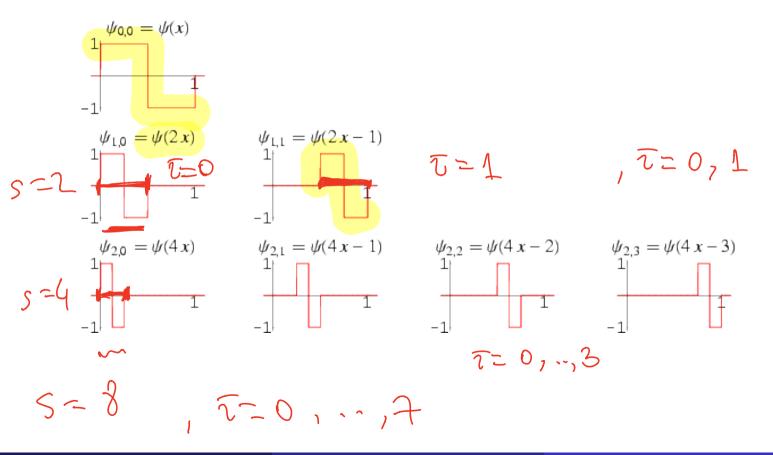


Wavelet basis

- A mother wavelet function W(x) is a localized function in space. For simplicity assume that W(x) has compact support on [0, 1].
- A wavelet basis is a collection of wavelets $W_{s,\tau}(x)$ obtained from W(x) by dilation with a scaling factor s and shifting by a translation factor τ : $W_{s,\tau}(x) = W(sx - \tau)$. Debaucher
- Here the scale plays the role of frequency in the FT, but the shift is novel and localized the basis functions in space.
- We focus on **discrete wavelet basis**, where the scaling factors are chosen to be powers of 2 and the shifts are integers:

$$W_{j,k} = W(2^j x - k), \quad k \in \mathbb{Z}, \ j \in \mathbb{Z}, \ j \ge 0.$$

Haar Wavelet Basis



Wavelet Transform

• Any function can now be represented in the wavelet basis:

$$f(x) = c_0 + \sum_{j=0}^{\infty} \sum_{k=0}^{(2)-1} c_{jk} W_{j,k}(x)$$

This representation picks out frequency components in different spatial regions.

• As usual, we truncate the basis at j < J, which leads to a total number of coefficients c_{ik} : F(x) Wowelet No bransform 2 values transform 2 coefficients

$$\sum_{j=0}^{J-1} 2^j = 2^J$$

Discrete Wavelet Basis

• Similarly, we discretize the function on a set of $N = 2^J$ equally-spaced nodes $x_{i,k}$ or intervals, to get the vector **f**:

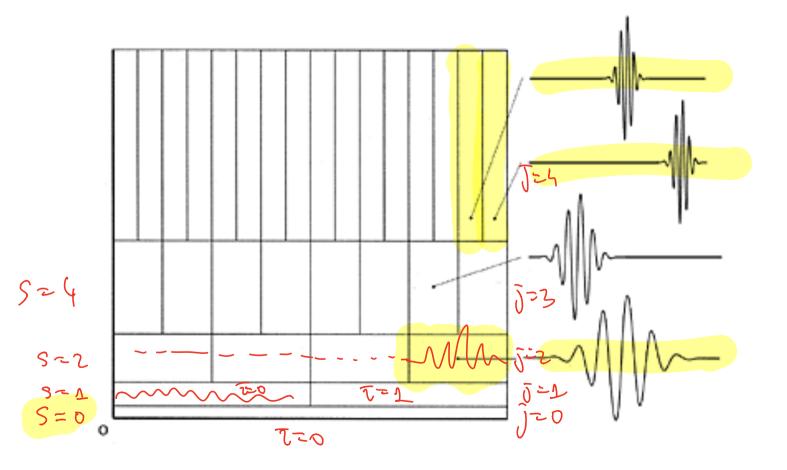
$${f f}=c_0+\sum_{j=0}^{J-1}\sum_{k=0}^{2^j-1}c_{jk}W_{j,k}(x_{j,k})={f W}_j{f c}$$

 In order to be able to quickly and stably compute the coefficients c we need an orthogonal wavelet basis:

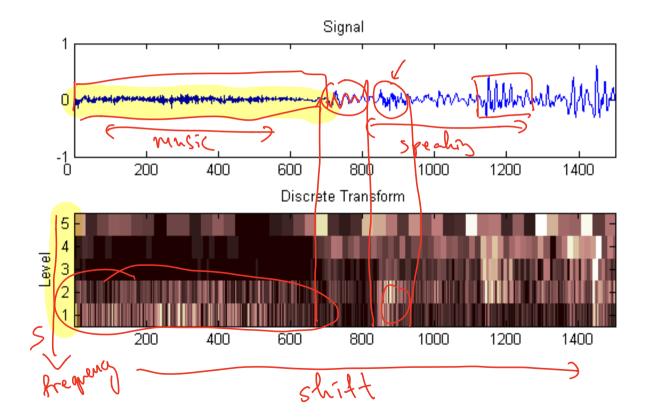
$$\int W_{j,k}(x)W_{l,m}(x)dx = \delta_{j,l}\delta_{l,m}$$

 The Haar basis is discretely orthogonal and computing the transform and its inverse can be done using a fast wavelet transform, in linear time O(N) time.

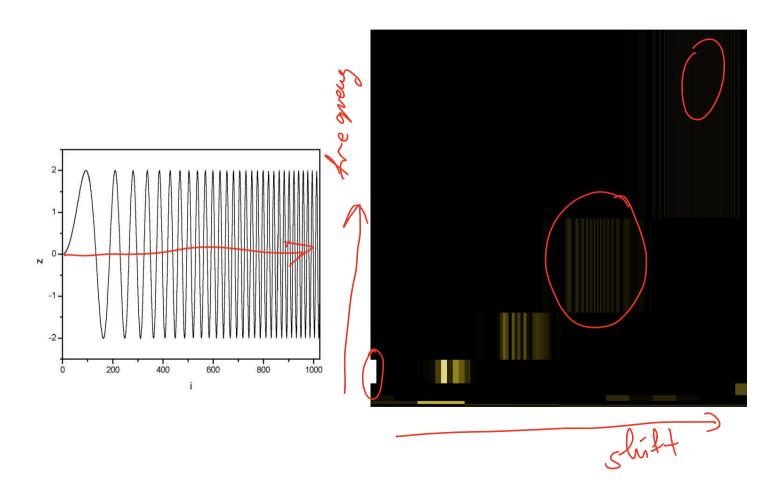
Discrete Wavelet Transform



Scaleogram



Another scaleogram



Conclusions

Conclusions/Summary

- Periodic functions can be approximated using basis of orthogonal trigonometric polynomials.
- The Fourier basis is **discretely orthogonal** and gives **spectral accuracy** for smooth functions.
- Functions with discontinuities are not approximated well: **Gibbs phenomenon**.
- The **Discrete Fourier Transform** can be computed very efficiently using the **Fast Fourier Transform** algorithm: $O(N \log N)$.
- FFTs can be used to **filter** signals, to do **convolutions**, and to provide spectrally-accurate **derivatives**, all in $O(N \log N)$ time.
- For signals that have different properties in different parts of the domain a **wavelet basis** may be more appropriate.
- Using specially-constructed **orthogonal discrete wavelet basis** one can compute **fast discrete wavelet transforms** in time O(N).