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Review of Linear Algebra

Eigenvalue Decomposition

For a square matrix A 2 Cn⇥n, there exists at least one � such that

Ax = �x ) (A� �I) x = 0

Putting the eigenvectors xj as columns in a matrix X, and the
eigenvalues �j on the diagonal of a diagonal matrix ⇤, we get

AX = X⇤.

A matrix is non-defective or diagonalizable if there exist n linearly

independent eigenvectors, i.e., if the matrix X is invertible:

X
�1

AX = ⇤

leading to the eigen-decomposition of the matrix

A = X⇤X
�1.
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Review of Linear Algebra

Unitarily Diagonalizable Matrices

A unitary or orthogonal matrix U has orthogonal colums each of
which has unit L2 norm:

U
�1 = U

?.

Unitary is used for complex matrices and is more general than
orthogonal, reserved for real matrices.
Recall that star denotes adjoint (conjugate transpose).

Unitary matrices are important because they are always

well-conditioned, 2 (U) = 1.

A matrix is unitarily diagonalizable if there exist n linearly
independent orthogonal eigenvectors, X ⌘ U,

A = U⇤U
?.

Theorem: Hermitian matrices, A? = A, are unitarily diagonalizable
and have real eigenvalues.
For real matrices we use the term symmetric.
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Review of Linear Algebra

Non-diagonalizable Matrices

For matrices that are not diagonalizable, one can use Jordan form

factorizations, or, more relevant to numerical mathematics, the
Schur factorization (decomposition):

A = UTU
?,

where T is upper-triangular (unlike Jordan form where only
nonzeros are on super-diagonal).

The eigenvalues are on the diagonal of T, and in fact if A is unitarily
diagonalizable then T ⌘ ⇤.

The Schur decomposition is not unique but it is the best
generalization of the eigenvalue (spectral) decomposition to general
matrices.
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Review of Linear Algebra

Singular Value Decomposition (SVD)

Every matrix has a singular value decomposition (SVD)

A =U⌃V
? =

pX

i=1

�iuiv
?
i

[m ⇥ n] = [m ⇥m] [m ⇥ n] [n ⇥ n] ,

where U and V are unitary matrices whose columns are the left, ui , and
the right, vi , singular vectors, and

⌃ = Diag {�1,�2, . . . ,�p}

is a diagonal matrix with real positive diagonal entries called singular

values of the matrix

�1 � �2 � · · · � �p � 0,

and p = min (m, n) is the maximum possible rank of the matrix.
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Review of Linear Algebra

Comparison to eigenvalue decomposition

Recall the eigenvector decomposition for diagonalizable matrices

AX = X⇤.

The singular value decomposition can be written similarly to the
eigenvector one

AV = U⌃

A
?
U = V⌃

and they both diagonalize A, but there are some important
di↵erences:

1 The SVD exists for any matrix, not just diagonalizable ones.
2 The SVD uses di↵erent vectors on the left and the right (di↵erent

basis for the domain and image of the linear mapping represented by
A).

3 The SVD always uses orthonormal basis (unitary matrices), not just
for unitarily diagonalizable matrices.
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Review of Linear Algebra

Relation to Eigenvalues

For Hermitian (symmetric) matrices, there is no fundamental

di↵erence between the SVD and eigenvalue decompositions (and also
the Schur decomposition).

The squared singular values are eigenvalues of the normal matrix:

�i (A) =
p
�i (AA

?) =
p
�i (A

?
A)

since
A

?
A = (V⌃U

?) (U⌃V
?) = V⌃

2
V

?

Similarly, the singular vectors are eigenvectors of A?
A or AA?.
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Review of Linear Algebra

Rank-Revealing Properties

Assume the rank of the matrix is r , that is, the dimension of the
range of A is r and the dimension of the null-space of A is n � r

(recall the fundamental theorem of linear algebra).

The SVD is a rank-revealing matrix factorization because only r of
the singular values are nonzero,

�r+1 = · · · = �p = 0.

The left singular vectors {u1, . . . ,ur} form an orthonormal basis for

the range (column space, or image) of A.

The right singular vectors {vr+1, . . . , vn} form an orthonormal basis

for the null-space (kernel) of A.
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Review of Linear Algebra

The matrix pseudo-inverse

For square non-singular systems, x = A
�1

b. Can we generalize the
matrix inverse to non-square or rank-deficient matrices?

Yes: matrix pseudo-inverse (Moore-Penrose inverse):

A
† = V⌃

†
U

?,

where
⌃

† = Diag
�
��1

1
,��1

2
, . . . ,��1

r , 0, . . . , 0
 
.

In numerical computations very small singular values should be
considered to be zero (see homework).

The least-squares solution to over- or under-determined linear systems
Ax = b can be obtained from:

x = A
†
b.
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Eigenvalue Problems

Sensitivity of Eigenvalues

Now consider a perturbation of a diagonalizable matrix �A and see
how perturbed the similar matrix becomes:

X
�1 (A+ �A)X = ⇤+ �⇤ )

�⇤ = X
�1 (�A)X )

k�⇤k 
��X�1

�� k�Ak kXk =  (X) k�Ak

Conclusion: The conditioning of the eigenvalue problem is related to
the conditioning of the matrix of eigenvectors.
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Eigenvalue Problems

Conditioning of Eigenvalue problems

k�⇤k   (X) k�Ak

If X is unitary then kXk
2
= 1 (from now on we exclusively work with

the 2-norm): Unitarily diagonalizable matrices are always

perfectly conditioned!

Warning: The absolute error in all eigenvalues is of the same order,
meaning that the relative error will be very large for the smallest
eigenvalues.

The conditioning number for computing eigenvectors is inversely
proportional to the separation between the eigenvalues

 (x,A) =

✓
min
j

|�� �j |
◆�1

.
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Eigenvalue Problems

The need for iterative algorithms

The eigenvalues are roots of the characteristic polynomial of A,
which is generally of order n.

According to Abel’s theorem, there is no closed-form (rational)
solution for n � 5.
All eigenvalue algorithms must be iterative!

There is an important distinction between iterative methods to:

Compute all eigenvalues (similarity transformations). These are based
on dense-matrix factorizations such as the QR factorization, with total
cost O(n3).
Compute only one or a few eigenvalues, typically the smallest or the
largest one (e.g., power method). These are similar to iterative
methods for solving linear systems.
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Eigenvalue Problems

Sparse Matrices

Recall that for a diagonalizable matrix

A
n = X⇤

n
X

�1

and assume well-separated eigenvalues |�1| > |�2| � |�3| · · · |�n|,
and that the columns of X are normalized, kxjk = 1.

For sparse matrices we sometimes only need to know a few of the

eigenvalues/vectors, not all of them.

Notably, knowing the eigenvector corresponding to the smallest and

largest (in magnitude) eigenvalues is often most important (see
Google Page Rank algorithm).
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Eigenvalue Problems

Iterative Method

Any initial guess vector q0 can be represented in the linear basis
formed by the eigenvectors

q0 = Xa

Recall iterative methods for linear systems: Multiply a vector with

the matrix A many times:

qk+1 = Aqk

qn = A
n
q0 =

�
X⇤

n
X

�1
�
Xa = X (⇤n

a)
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Eigenvalue Problems

Power Method

As n ! 1, the eigenvalue of largest modulus �0 will dominate,

⇤
n = �n

1Diag

⇢
1,

✓
�2

�1

◆n

, . . .

�
! Diag {�n

1, 0, . . . , 0}

qn = X (⇤n
a) ! �n

1X

2

6664

a1

0
...
0

3

7775
= �n

1x1

Therefore the normalized iterates converge to the eigenvector:

q̃n =
qn

kqnk
! x1

The Rayleigh quotient converges to the eigenvalue:

rA (qn) =
q
?
nAqn

qn · qn
= q̃

?
nAq̃n ! �1
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Eigenvalue Problems

Power Iteration

Start with an initial guess q0, and then iterate:
1 Compute matrix-vector product and normalize it:

qk =
Aqk�1��Aqk�1

��

2 Use Raleigh quotient to obtain eigenvalue estimate:

�̂k = q
?
kAqk

3 Test for convergence: Evaluate the residual

rk = Aqk � �̂kqk

and terminate if the error estimate is small enough:
����1 � �̂k

��� < "
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Eigenvalue Problems

Eigenvalues in MATLAB

The Schur decomposition is provided by [U,T ] = schur(A).

In MATLAB, sophisticated variants of the QR algorithm (LAPACK
library) are implemented in the function eig :

⇤ = eig(A)

[X ,⇤] = eig(A)

For large or sparse matrices, iterative methods based on the Arnoldi

iteration (ARPACK library), can be used to obtain a few of the
largest eigenvalues:

⇤ = eigs(A, neigs)

[X ,⇤] = eigs(A, neigs)
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Singular Value Decomposition

Sensitivity (conditioning) of the SVD

A = U⌃V
?

Since unitary matrices have unit 2-norm,

k�⌃k
2
⇡ k�Ak

2
.

The SVD computation is always perfectly well-conditioned!

However, this refers to absolute errors: The relative error of small
singular values will be large.

The power of the SVD lies in the fact that it always exists and can
be computed stably...but it is somewhat expensive to compute.
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Singular Value Decomposition

Computing the SVD

The SVD can be computed by performing an eigenvalue computation
for the normal matrix A

?
A (a positive-semidefinite matrix).

This squares the condition number for small singular values and is not
numerically-stable.

Instead, modern algorithms use an algorithm based on computing
eigenvalues / eigenvectors using the QR factorization.

The cost of the calculation is ⇠ O(mn
2), of the same order as

eigenvalue calculation if m ⇠ n.
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Singular Value Decomposition

Reduced SVD

The full (standard) SVD

A =U⌃V
? =

pX

i=1

�iuiv
?
i

[m ⇥ n] = [m ⇥m] [m ⇥ n] [n ⇥ n] ,

is in practice often computed in reduced (economy) SVD form, where ⌃

is [p ⇥ p]:

[m ⇥ n] = [m ⇥ n] [n ⇥ n] [n ⇥ n] for m > n

[m ⇥ n] = [m ⇥m] [m ⇥m] [m ⇥ n] for n > m

This contains all the information as the full SVD but can be cheaper to

compute if m � n or m ⌧ n.
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Singular Value Decomposition

In MATLAB

[U,⌃,V ] = svd(A) for full SVD, computed using a QR-like method.

[U,⌃,V ] = svd(A,0 econ0) for economy SVD.

The least-squares solution for square, overdetermined,
underdetermined, or even rank-de�cient systems can be computed
using svd or pinv (pseudo-inverse, see homework).

The q largest singular values and corresponding approximation can be
computed e�ciently for sparse matrices using

[U,⌃,V ] = svds(A, q).
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Principal Component Analysis (PCA)

Low-rank approximations

The SVD is a decomposition into rank-1 outer product matrices:

A = U⌃V
? =

rX

i=1

�iuiv
?
i =

rX

i=1

Ai

The rank-1 components Ai are called principal components, the
most important ones corresponding to the larger �i .
Ignoring all singular values/vectors except the first q, we get a
low-rank approximation:

A ⇡ Âq = Uq⌃qV
?
q =

qX

i=1

�iuiv
?
i .

Theorem: This is the best approximation of rank-q in the Euclidian
and Frobenius norm:

���A� Âq

���
2

= �q+1
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Principal Component Analysis (PCA)

Applications of SVD/PCA

Statistical analysis (e.g., DNA microarray analysis, clustering).

Data compression (e.g., image compression, explained next).

Feature extraction, e.g., face or character recognition (see
Eigenfaces on Wikipedia).

Latent semantic indexing for context-sensitive searching (see
Wikipedia).

Noise reduction (e.g., weather prediction).

One example concerning language analysis given in homework.
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Principal Component Analysis (PCA)

Image Compression

>> A=rgb2g ray ( imread ( ’ ba ske t . jpg ’ ) ) ;
>> imshow (A ) ;
>> [U, S ,V]= svd ( doub l e (A ) ) ;
>> r =25; % Rank�r app rox imat i on
>> Acomp=U( : , 1 : r )⇤S ( 1 : r , 1 : r )⇤ (V ( : , 1 : r ) ) ’ ;
>> imshow ( u i n t 8 (Acomp ) ) ;
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Principal Component Analysis (PCA)

Compressing an image of a basket

We used only 25 out of the ⇠ 400 singular values to construct a rank 25
approximation:
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Principal Component Analysis (PCA)

Principal Component Analysis

Principal Component Analysis (PCA) is a term used for low-rank
approximations in statistical analysis of data.

Consider having m empirical data points or observations (e.g., daily
reports) of n variables (e.g., stock prices), and put them in a data

matrix A = [m ⇥ n].

Assume that each of the variables has zero mean, that is, the
empirical mean has been subtracted out.

It is also useful to choose the units of each variable (normalization) so
that the variance is unity.

We would like to find an orthogonal transformation of the original
variables that accounts for as much of the variability of the data as
possible.

Specifically, the first principal component is the direction along which
the variance of the data is largest.
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Principal Component Analysis (PCA)

PCA and Variance
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Principal Component Analysis (PCA)

PCA and SVD

The covariance matrix of the data tells how correlated di↵erent pairs
of variables are:

C = A
T
A = [n ⇥ n]

The largest eigenvalue of C is the direction (line) that minimizes the
sum of squares of the distances from the points to the line, or
equivalently, maximizes the variance of the data projected onto that
line.

The SVD of the data matrix is A = U⌃V
?.

The eigenvectors of C are in fact the columns of V, and the
eigenvalues of C are the squares of the singular values,

C = A
T
A = V⌃ (U?

U)⌃V
? = V⌃

2
V

?.

Note: the eigenvalues values are necessarily real and positive since C

is positive semi-definite.
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Principal Component Analysis (PCA)

Dimensionality reduction via PCA
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Principal Component Analysis (PCA)

Nonlinear“PCA”

A. Donev (Courant Institute) Lecture V 10/2020 35 / 38



Conclusions

Outline

1 Review of Linear Algebra

2 Eigenvalue Problems

3 Singular Value Decomposition

4 Principal Component Analysis (PCA)

5 Conclusions

A. Donev (Courant Institute) Lecture V 10/2020 36 / 38



Conclusions

Summary for Eigenvalues

Eigenvalues are well-conditioned for unitarily diagonalizable

matrices (includes Hermitian matrices), but ill-conditioned for nearly
non-diagonalizable matrices.

Eigenvectors are well-conditioned only when eigenvalues are

well-separated.

Eigenvalue algorithms are always iterative.

Estimating all eigenvalues and/or eigenvectors can be done by
using iterative QR factorizations, with cost O(n3).

Iterative algorithms are used to obtain only a few

eigenvalues/vectors for sparse matrices.

MATLAB has high-quality implementations of sophisticated variants
of these algorithms.
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Conclusions

Summary for SVD

The singular value decomposition (SVD) is an alternative to the
eigenvalue decomposition that is better for rank-de�cient and

ill-conditioned matrices in general.

Computing the SVD is always numerically stable for any matrix,
but is typically more expensive than other decompositions.

The SVD can be used to compute low-rank approximations to a
matrix via the principal component analysis (PCA).

PCA has many practical applications and usually large sparse

matrices appear.
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