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Sample Solution Key

Here is an example solution of a variation of HW1 problem 4, where we do a first derivative instead
of a second. I do not quite expect this kind of report from everyone, but the key things to take are the
figures to present the results, and the explanations of results.

1 Sample Problem

The derivative of a function f(x) at a point x0 can be calculated using finite differences, for example the
first-order one-sided difference

f ′(x = x0) ≈
f(x0 + h)− f(x0)

h

or the second-order centered difference

f ′(x = x0) ≈
f(x0 + h)− f(x0 − h)

2h
,

where h is sufficiently small so that the approximation is good.

1. [10pts] Consider a simple function such as f(x) = cos(x) and x0 = π/4 and calculate the above finite
differences for several h on a logarithmic scale (say h = 2−m for m = 1, 2, · · · ) and compare to the
known derivative. For what h can you get the most accurate answer?

2. [10pts] Obtain an estimate of the truncation error in the one-sided and the centered difference formulas
by performing a Taylor series expansion of f(x0 + h) around x0. Also estimate what the roundoff error
is due to cancellation of digits in the differencing. At some h, the combined error should be smallest
(optimal, which usually happens when the errors are approximately equal in magnitude). Estimate this
h and compare to the numerical observations.

1.1 Sample Solution

Comments from me on what is important are in square brackets and italic.

1.1.1 Part 1: Writing and Executing the Code

The first derivative is computed in the Matlab code FirstDeriv.m with default double precision and in the
Matlab code FirstDerivSP.m with single precision arithmetic. The results are shown in Fig. 1. [Crucial here
is to use log-log scaling of both axes because both vary over many orders of magnitude, to show results with
symbols and theory with lines, with different colors and shading and a clear legend so one can tell what is what.]

[In addition to just showing the figure crucial is to interpret the results, i.e., tell us what you see/learn
from the figure. This will always count for at least one half of the points – just writing code and plotting
things does not constitute scientific computing though it is an essential part of it !] We see that for the
one-sided difference we obtain the smallest error when h ≈ 10−4 for single precision (relative error of 10−4,
i.e., 4 digits of accuracy), and when h ≈ 10−8 for double precision (8 digits of accuracy). For the two-sided
difference we obtain minimal error for h ≈ 10−2 for single precision (relative error of 10−6, i.e., 6 digits of
accuracy), and when h ≈ 10−5 for double precision (11-12 digits of accuracy).
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https://cims.nyu.edu/~donev/Teaching/SciComp/Matlab/FirstDeriv.m
https://cims.nyu.edu/~donev/Teaching/SciComp/Matlab/FirstDerivSP.m
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Figure 1: Results for the accuracy of the one-sided and centered-difference numerical approximation to
the first derivative. The top panel is for single-precision and the bottom panel is for double precision. The
symbols show numerical results (circles for one-sided, squares for two-sided), the dashed lines of the same color
show theoretical estimates of the truncation error, and the solid line shows the estimate of the roundoff error.

1.1.2 Part 2: Analysis of the Results

[Important here to name the types of errors to demonstrate you understand what they are] There are two
sources of numerical here: truncation error of replacing the limit in the definition of the derivative, and
roundoff error from performing the calculation with finite precision arithmetic.

The truncation error here is obtained from a Taylor series expansion, to get, for the one-sided difference:
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f1 =
f(x0 + h)− f(x0)

h
=
h f ′(x0) + h2 f ′′(x0)/2 +O(h3)

h

= f ′(x0)− f ′′(x0)
h

2
+O(h2).

The magnitude of the relative error can be estimated to be of O(h),

|εt| =
|f1 − f ′(x0)|
|f ′(x0)|

≈ |f
′′(x0)|
|f ′(x0)|

h

2
=
h

2
.

and the absolute error is of the same order. For the two-sided difference, the truncation error is much
smaller,

f2 =
f(x0 + h)− f(x0 − h)

2h
=,

= f ′(x0) + f ′′′(x0)
h2

6
+O(h3),

so now the relative error can be estimated to be of O(h2),

|εt| =
|f2 − f ′(x0)|
|f ′(x0)|

≈ |f
′′′(x0)|
|f ′(x0)|

h2

6
=
h2

6
.

A rough estimate [Remember that factors of order 2 or so are not important here, just an estimate is good
enough] of the roundoff error is obtained by noting that the numerator is computed with absolute error of
about u, where u is the machine precision or roundoff unit (∼ 10−16 for double precision). The actual value of
the numerator is close to h f ′(x = x0), so the magnitude of the relative error in the numerator is on the order of

εr ≈
∣∣∣∣ u

h f ′(x = x0)

∣∣∣∣ ≈ u

h
,

since |f ′(x = x0)| ≈ 0.7 is of order unity. [Crucial here to show that you understood what the source of
the problem is: cancellation of digits ] We see now that due to the cancellation of digits in subtracting
nearly identical numbers, we can get a very large relative error when h is small. The relative truncation
error of the whole calculation is thus dominated by the relative error in the numerator, and is close to εr.

Let’s consider first the one-sided difference. [I will not give the details for the centered one but your report
of course should.] The magnitude of the overall relative error is approximately the sum of the truncation
and roundoff errors,

ε ≈ εt + εr =
h

2
+
u

h
.

[The important lesson here is that different errors dominate in different regimes, and to show you understood
which one] We see that for large h the truncation error dominates (first term) but for small h the roundoff error
(second term) dominates. So we cannot take h either too large or too small. For double precision, u ∼ 10−16.
The minimum error is achieved for (just minimize ε w.r.t. h by taking first derivative and setting to zero)

h ≈ hopt =
√

2u ≈
√

2 · 10−16 ≈ 10−8,

and the actual value of the smallest possible relative error is

εopt =
hopt

2
+

u

hopt
=
√

2u = hopt ∼ 10−8.

These estimates agree with the numerical results shown in Fig. 1. Just replace u ≈ 6 · 10−8 for single
precision to get that hopt = εopt ≈ 10−4, in agreement with our numerical results.
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