
Scientific Computing, Fall 2020
Assignment III: Eigen and Singular Values

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

October 1st, 2020
Due by Sunday October 18th, 2020

Remember to give an explanation of your results in your report, in addition to reporting the results.
For the purposes of grading the maximum number of points is 70.

1 [30 pts] Solving Ill-Conditioned Linear Systems via SVD

Recall the example of a very ill-conditioned symmetric positive-definite matrix from Homework 2, the
Hilbert matrix, whose entries are:

aij =
1

i+ j − 1
.

Let the size of the matrix be n = 15. Compute the right-hand side (rhs) b = Ax so that the exact
solution is x = 1 (all unit entries). Solve the linear system in MATLAB and report the relative error in
the approximate solution x̂ (for example, in the Euclidian norm, δx = ‖x− x̂‖2).
1.1 [10pts] Solving systems using the SVD

[10 pts] Now compute the SVD decomposition of A. Look at the singular values of A and comment on
whether you can see how ill-conditioned this matrix is based on this [Hint: The MATLAB function diag
can be used to extract the diagonal of a matrix or to construct a diagonal matrix]. Construct the matrix
pseudo-inverse A† from the SVD, and from it a solution x̂ = A†b, and see if this is any more accurate than
the previous direct solution. [Hint: To check your answers you can use the MATLAB function pinv and
compare to your answer for small n].

1.2 [20pts] Regularized Pseudo-Inverse

For a given relative tolerance ε � 1, a modified or regularized pseudo-inverse Â
†

is obtained by first
setting to zero all singular values that are smaller than εσ1, where σ1 is the largest singular value. This

can be obtained in MATLAB using the built-in function pinv as Â
†

= pinv(A, εσ1) but it is strongly
recommended that you write your own function and only use the built-in one to check your code.

[15pts] For several logarithmically-spaced tolerances (for example, ε = 10−i for i = 1, 2, . . . , 16), compute

the modified pseudo-inverse and then a solution x̂ = Â
†
b. Plot the relative error in the modified solution

versus the tolerance on a log-log scale. You should see a clear minimum error for some ε = ε̃. Report this
optimal ε̃ and the smallest error that you can get.

[5pts] Explain what kinds of errors are traded off, that is, what kind of errors dominate for large versus for
small tolerances [Hint: You should recall similar plots of errors versus parameter from the first homework.
Think what happens if ε is large versus when it approaches zero.]

I encourage you to think a little bit whether the observation/claim that pseudoinverse can solve this
ill-conditioned linear system violates the statement that “no numerical method can solve an ill-conditioned
problem accurately.”

2 [45 points] PCA: Digraph Matrix of English

[Due to Cleve Moler]
There are many interesting applications of principal component analysis (which is nothing more than the

singular-value decomposition) in varied disciplines. This one focuses on a simple but hopefully interesting
example of analyzing some of the structure of written language (spelling).

1

For this assignment use English, which has 26 letters, indexed from 1− 26 in some way. The ASCII
encoding of characters is one way to index the letters (’A’ has ASCII code 65), but for this assignment you
may find that putting the vowels (AEIOUY) first will be better. A digraph frequency matrix is a 26× 26
matrix where each entry aij counts how many times the i-th letter follows the j-th letter in some piece
of text (you can also swap the order to count). All blanks and non-letter characters are removed, and the
text is capitalized so there is no difference between ’A’ and ’a’, and often it is assumed that the first letter
follows the last letter. A digraph matrix can be constructed in MATLAB from a piece of text saved in a
file ’text.txt’ by first converting the text to a vector of integers k where each element is in the range 1− 26:

% Read the f i l e :
f i l e =’ t ext . txt ’ ; % Sample text
f i d = fopen (f i l e) ; txt = f r ead (f i d) ; f c l o s e (f i d) ;

% Convert to i n t e g e r s between 1 and 26 :
numtxt = upper (char (txt)) − ’A’ + 1 ;
% El iminate any weird c h a r a c t e r s and spaces :
k=numtxt ((numtxt >= 1) & (numtxt <= 2 6)) ;

[10pts] Find some (large) piece of English text (cut and paste from Wikipedia, for example) and convert
it to a in integer vector k, and then from that construct the digraph matrix A for that text. Normalize the
matrix so that the largest element in the matrix is 1.0. Visualize (plot) the matrix, for example, using the
MATLAB function imagesc (alse note that colorbar may be useful, but note that if you use pcolor you may
not get what you want – read the documentation first!).

[10pts] Now compute the SVD (PCA),

A =
26∑
i=1

σiuiv
?
i ,

and visualize (plot) the first (principal) rank-1 component A1 = σ1u1v
?
1, the second principal component

A2 = σ2u2v
?
2, and the rank-2 approximation to the matrix, A1 + A2.

[7.5pts] Can you see some features of the English language that the first principal component captures?
[Hint: Doing sum(A) computes the frequency of occurrence of the different letters (make sure you understand
why!)]

[7.5pts] Can you see some features of the English language that the second principal component captures?
Hint: The following permutation will reorder the letters so that the vowels come first (try it!):

p = [1 , 5 , 9 , 1 5 , 2 1 , 2 5 , 2 : 4 , 6 : 8 , 1 0 : 1 4 , 1 6 : 2 0 , 2 2 : 2 4 , 2 6] ;
char (p+’A’−1) % The re−ordered ’ alphabet ’

[2.5pts] Are there any obvious features that the rank-2 approximation misses?
[7.5pts] Do some testing to make sure that what you are observing is a feature of the language and not

the particular text you chose. For example, try a different, a longer text, and maybe even something in
another language. How long does the text need to be to see the features?

2

